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Abstract

In this paper, the AM±FM modulation model is applied to speech analysis, synthesis and coding. The AM±FM

model represents the speech signal as the sum of formant resonance signals each of which contains amplitude and

frequency modulation. Multiband ®ltering and demodulation using the energy separation algorithm are the basic tools

used for speech analysis. First, multiband demodulation analysis (MDA) is applied to the problem of fundamental

frequency estimation using the average instantaneous frequency as estimates of pitch harmonics. The MDA pitch

tracking algorithm is shown to produce smooth and accurate fundamental frequency contours. Next, the AM±FM

modulation vocoder is introduced, which represents speech as the sum of resonance signals. A time-varying ®lterbank is

used to extract the formant bands and then the energy separation algorithm is used to demodulate the resonance signals

into the amplitude envelope and instantaneous frequency signals. E�cient modeling and coding (at 4.8±9.6 kbits/sec)

algorithms are proposed for the amplitude envelope and instantaneous frequency of speech resonances. Finally, the

perceptual importance of modulations in speech resonances is investigated and it is shown that amplitude modulation

patterns are both speaker and phone dependent. Ó 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird das AM±FM Modulationsmodel f�ur Sprachanalyse, Sprachsynthese und Sprachkodierung

angewendet. Das AM±FM Modulationsmodel repr�asentiert das Sprachsignal als Summe von Formantresonanzen,

welche jeweils Amplituden- und Frequenzmodulation enthalten. Multiband®lterung und Demodulation, basierend auf

dem Energie-Trennungsalgorithmus, sind die wesentlichen Hilfsmittel f�ur die Sprachanalyse. Zuerst wird die Multi-

band-Demodulationsanalyse (MDA), basierend auf der Sch�atzung von Harmonischen der Grundfrequenz mittels

durchschnittlicher Frequenz, auf das Problem der Grundfrequenzbestimmung angewandt. Der MDA-Algorithmus zur

Bestimmung der Grundfrequenz erzeugt glatte und genaue Grundfrequenzverla�ufe. Anschliessend wird der AM±FM-

Modulationsvocoder, der Sprache als eine Summe von Resonanzsignalen darstellt, vorgestellt. Eine zeitlich variable

Filterbank wird zur Extraktion der Formantb�ander und der Energie-Trennungsalgorithmus zur Demodulation des

Resonanzsignals in die Einh�ullende der Amplitude und die zugrundeliegende Frequenz verwendet. Eine e�ziente

Modellierung und ein Kodierungsalgorithmus (4.8±9.6 kbits/sec) f�ur die Einh�ullende der Amplitude und

die zugrundeliegende Frequenz der Sprachresonanzen werden vorgeschlagen. Abschliessend wird die perzeptuelle
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Bedeutung der Modulation von Sprachresonanzen untersucht und es wird gezeigt, dass die Muster der Amplituden-

modulation von Sprecher und Phonem abh�angen. Ó 1999 Elsevier Science B.V. All rights reserved.

ReÂsumeÂ

Cet article pr�esente un mod�ele de modulation AM±FM pour l'analyse, la synth�ese, et le codage de la parole. Le

mod�ele AM±FM d�ecrit le signal de parole comme la somme de di��erents signaux repr�esentant les fr�equences form-

antiques, modul�es en fr�equence et amplitude. Un ®ltrage multibandes et une d�emodulation bas�ee sur un algorithme de

s�eparation d'�energie sont utilis�es pour analyser le signal. Une analyse par d�emodulation multibandes (ADM) est tout

d'abord employ�ee a®n d'estimer la fr�equence fondamentale du signal, en se basant sur la fr�equence instantan�ee mo-

yenne comme estimation des harmoniques du pitch. Cet algorithme de suivi du pitch conduit �a une estimation lisse et

pr�ecise de la fr�equence fondamentale. Un vocoder utilisant une modulation AM±FM est ensuite mis en oeuvre pour

mod�eliser le signal par la somme de ses harmoniques. Un banc de ®ltres adaptatif permet d'extraire les bandes de

fr�equence formantiques et un algorithme fond�e sur la s�eparation d'�energie est utilis�e pour d�emoduler les harmoniques

des formats en signaux instantan�es modul�es en amplitude et en fr�equence. Di��erents algorithmes sont propos�es con-

duisant �a un codage e�cace �a 4.8±9.6 kbits/sec de l'enveloppe et la fr�equence instantan�ee des r�esonances formantiques.

En®n, l'importance perceptive de la modulation des r�esonances du signal de parole est �etudi�ee et d�emontre que la

modulation d'amplitude ainsi obtenue est ind�ependante du locuteur et du phon�eme. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Despite the well-known existence of nonlinear
and time-varying phenomena during speech pro-
duction the linear source-®lter model is extensively
used as the foundation of speech modeling. Devi-
ations from these linear assumptions are mathe-
matically modeled, often with little concern about
the underlying physical phenomena. Such models
have had some success in reproducing and syn-
thesizing speech using concatenative methods, but
they have not been equally successful in trans-
forming speaker characteristics and speaking styles
in a controlled way.

Motivated by nonlinear and time-varying phe-
nomena 2 during speech production and the need

for a better understanding of the speech produc-
tion process, Maragos et al. (1993a) proposed a
nonlinear model that describes a speech resonance
as a signal with a combined amplitude modula-
tion (AM) and frequency modulation (FM)
structure

r�t� � a�t�cos 2p fct

240@ �
Zt

0

q�s� ds

35� h

1A; �1�

where fc , F is the `center value' of the formant
frequency, q�t� is the frequency modulating signal,
and a�t� is the time-varying amplitude. The in-
stantaneous formant frequency signal is de®ned as
f �t� � fc � q�t�. The speech signal s�t� is modeled
as the sum s�t� �PK

k�1 rk�t� of K such AM±FM
signals, one for each formant. Modeling formant
resonance signals as AM±FM signals relates both
to formant models and to the phase vocoder (see
Section 3 for a comparison).

The use of a nonlinear model for speech reso-
nances was motivated by the work of Teager and
Teager (1990). Kaiser (1990) formally introduced
the energy operator as a signal analysis tool. In a
series of papers Maragos et al. (1991, 1993a, b)
laid down the groundwork for applying the

2 Evidence for the existence of speech modulations has been

provided in (Maragos et al., 1993a). For instance, as Teager's

experiments have demonstrated, the air jet ¯owing through the

vocal tract during speech production is highly unstable and

oscillates between its walls, attaching or detaching itself, and

thereby changing the e�ective cross-sectional areas and air

masses. This can cause instantaneous modulations of the

amplitude and frequency of a speech resonance as explained

in (Maragos et al., 1993a) using time-varying oscillators.
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AM±FM model and energy operators to demod-
ulation of speech resonances. Multiband ®ltering
and demodulation using the energy operator was
formalized by Bovik et al. (1993). Original work in
the areas of signal processing, speech analysis,
synthesis and recognition, music processing
and image processing motivated or based on the
AM±FM modulation model and the energy sepa-
ration algorithm can be found in the literature
(Potamianos, 1995; Lu and Doerschuk, 1996; Rao,
1996; Sussman, 1996; Jankowski, 1996 Havlicek,
1996; Potamianos and Maragos, 1997). Harmonic
modeling using AM±FM models has also attracted
some interest (Ramalho, 1994; Stylianou, 1996) as
a generalization of the short-time invariant sinu-
soidal model (McAulay and Quatieri, 1986). Fi-
nally, the need of demodulating a sum of AM±FM
signals with overlapping spectra was the motiva-
tion for Santhanam (1998).

In this paper, the AM±FM modulation model is
applied to speech analysis, synthesis and coding.
The ®rst part of this paper continues the work of
Potamianos and Maragos (1996) on multiband
demodulation for speech analysis applications.
Speci®cally, multiband demodulation is applied to
fundamental frequency estimation: the average
instantaneous frequency in each band is used as a
harmonic frequency estimate (i.e., fundamental
frequency multiple) and the fundamental fre-
quency is calculated from the harmonic frequen-
cies by functional minimization. The second part
of this paper focuses on the AM±FM modulation
vocoder as a means to model and study the per-
ceptual importance of modulations in speech. The
vocoder models speech as a sum of formant reso-
nance signals (see Eq. (1)) extracted from the
speech signal through time-varying ®ltering. E�-
cient algorithms are proposed for modeling and
coding of the amplitude envelope and instanta-
neous frequency signals of each resonance. The
modeling provides ¯exibility in controlling the
amount of amplitude and frequency modulations
in the synthesized resonance signals. The proposed
analysis±synthesis system provides the means for
measuring the amount and perceptual importance
of amplitude and frequency modulation in speech
resonances. Overall, the paper o�ers a compre-
hensive collection of algorithms that can be used

for the analysis and synthesis of nonlinear phe-
nomena in speech production.

The organization of this paper is as follows.
First multiband demodulation is introduced, the
analysis tool used extensively in this paper. In
Section 4 the application of the AM±FM modu-
lation model and multiband demodulation analy-
sis to the problem of fundamental frequency
estimation is presented. In Section 3, the AM±FM
analysis±synthesis system is presented and e�cient
coding algorithms are proposed for the amplitude
and frequency modulating signals of each reso-
nance. Finally, the perceptual importance of
modulations is discussed in Section 4.

2. Speech analysis

In this section, the main tools used throughout
the paper are introduced namely multiband ®lter-
ing and demodulation analysis. Short-time in-
stantaneous frequency estimates are proposed and
their relative merits are discussed for formant and
fundamental frequency estimation. Next, the
multiband demodulation formant tracking algo-
rithm introduced (Potamianos and Maragos,
1996) is outlined. Finally, multiband ®ltering and
demodulation are applied to the problem of fun-
damental frequency estimation.

2.1. Multiband demodulation analysis

A speech resonance (or, in general, speech fre-
quency band) signal r�t� is extracted from the
speech signal x�t� through bandpass ®ltering. A
real Gabor ®lter is used for this purpose. The
Gabor ®lter, by being maximally smooth and op-
timally concentrated both in the time and fre-
quency domain, provides smooth amplitude and
frequency estimates in the demodulation stage that
follows. The amplitude envelope ja�t�j and in-
stantaneous frequency f �t� signals are obtained by
applying the energy separation algorithm (which is
an AM±FM demodulation algorithm) on the
speech resonance signal r�t�. A formal discussion
on using Gabor wavelets for multiband demodu-
lation analysis (MDA) can be found in (Bovik
et al., 1993).
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The energy separation algorithm (ESA) (Mar-
agos et al., 1993a) is based on the nonlinear dif-
ferential Teager±Kaiser energy operator (Kaiser,
1990). The energy operator tracks the energy of
the source producing an oscillation signal r�t� and
is de®ned as W�r�t�� � � _r�t��2 ÿ r�t��r�t�; where
_r � dr=dt. The ESA frequency and amplitude es-
timates are (Maragos et al., 1993a)

1

2p

��������������
W� _r�t��
W�r�t��

s
� f �t�; W�r�t����������������

W� _r�t��p � ja�t�j: �2�

Similar equations and algorithms exist in discrete
time. An alternative way to estimate ja�t�j, f �t� is
the Hilbert transform demodulation (HTD) algo-
rithm, i.e., as the modulus and the phase derivative
of the Gabor analytic signal (see (Potamianos and
Maragos, 1994) for an ESA versus HTD com-
parison).

2.2. Short-time frequency estimates

Short-time estimates of the average instanta-
neous frequency have been proposed in (Pota-
mianos and Maragos, 1996) in the context of an
MDA-based formant tracking application. Spe-
ci®cally, the unweighted Fu and weighted average
instantaneous frequency Fw estimates were de®ned
as (see also (Cohen and Lee, 1992))

Fu � 1

T

Zt0�T

t0

f �t� dt; �3�

Fw �
R t0�T

t0
f �t� �a�t��2 dtR t0�T

t0
�a�t��2 dt

; �4�

where ja�t�j, f �t� are the amplitude envelope and
the instantaneous frequency signals of resonance
signal r�t�, t0 and T are the start and duration of
the analysis frame.

To illustrate the behavior of the two short-time
estimators we assume that a speech signal can be
modeled as a sum of sinusoids with slowly time-
varying amplitudes and frequencies (McAulay
andQuatieri, 1986) in particular, a speech reso-
nance can be modeled as a sum of a few sinusoids
representing the harmonics in the formant band,
i.e.,

r�t� �
X

n

an cos �2pfnt � hn�; �5�

where an, fn, hn are the harmonic amplitudes, fre-
quencies and phases. Using this simple sinusoidal
model it can be shown (see Appendix A) that Fu

locks on the harmonic frequency with the greatest
amplitude in the formant band, while Fw weights
each harmonic frequency in the formant band by
its squared amplitude, i.e.,

Fu � fM ; Fw �
P

n fna2
nP

n a2
n

; �6�

where fM is the frequency of the most prominent
harmonic in the spectrum band (aM � maxk�ak�).
As a result, the unweighted estimate Fu is a good
harmonic frequency estimate, i.e., a multiple kF0 of
the fundamental frequency F0. The accuracy of the
harmonic estimate improves as the bandwidth of
the resonance signal r�t� decreases. The weighted
estimate Fw provides an amplitude weighted har-
monic frequency average which is a natural for-
mant frequency estimate. For that reason Fw was
used for formant tracking (Potamianos and Mar-
agos, 1996). A visualization of the properties of Fu,
Fw for the sum of two amplitude modulated sinu-
soids can be found in (Potamianos and Maragos,
1996).

2.3. Formant tracking

In (Potamianos and Maragos, 1996), multiband
demodulation analysis and the weighted frequency
estimate Fw were applied to formant tracking. The
MDA formant tracking algorithm is brie¯y re-
viewed next.

The speech signal is ®ltered through a ®xed
bank of Gabor bandpass ®lters, uniformly spaced
in frequency (typical e�ective RMS Gabor ®lter
bandwidth is 400 Hz and spacing is 50 Hz). The
amplitude envelope ja�t�j and instantaneous fre-
quency f �t� signals are estimated for each Gabor
®lter output using the ESA. The short-time
weighted instantaneous frequency Fw�t; m� is com-
puted (every 10 ms) for each speech frame located
around time t and for each Gabor ®lter centered
at frequency m. The time-frequency distribution
Fw�t; m� is used to determine the raw formant
tracks. Finally, the tracks are re®ned using global
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continuity constraints. For a detailed explanation
of the MDA formant tracker, results and com-
parisons with other formant tracking algorithms
see (Potamianos and Maragos, 1996).

2.4. Fundamental frequency estimation

As discussed in Section 2.2 and shown in Ap-
pendix A, the short-time average of the instanta-
neous frequency Fu is an accurate estimate of the
most dominant frequency in the signal's spectrum
(for narrowband signals r�t�). Next, a multiband
demodulation pitch tracking algorithm is pro-
posed using Fu as a harmonic frequency estimate. 3

Similarly to MDA formant tracking, the speech
signal is ®ltered through a bank of Gabor band-
pass ®lters and then each ®ltered signal is
demodulated to amplitude envelope and instanta-
neous frequency signals. Typical e�ective RMS
Gabor ®lter bandwidth is 200 Hz and the ap-

proximate spacing is 100 Hz following a mel fre-
quency scale (by using a non-uniform ®lter spacing
harmonic frequency estimation errors are averaged
out). The short-time average of the instantaneous
frequency signal Fu is computed and is used as an
estimate of the most prominent harmonic in each
band. The resulting time-frequency average in-
stantaneous frequency distribution Fu�t; m� is used
in a functional minimization procedure to estimate
the pitch contour.

A typical Gabor ®lterbank is shown in
Fig. 1(a). The harmonic frequency estimates for a
20 ms speech frame are shown as dotted lines su-
perimposed on the Fourier spectrum of the speech
signal in Fig. 1(b). Note that certain harmonics
have no corresponding Fu estimates while others
have more than one estimates depending on the
position of the ®lters, i.e., MDA is a non-para-
metric analysis method. The time-frequency dis-
tribution of Fu�t; m� is shown in Fig. 2(c) for a
sentence from the TIMIT database. The harmonic
tracks are clearly visible and directly correspond to
the harmonic regions in the narrowband speech
spectrogram shown in Fig. 2(b).

The fundamental frequency of a voiced speech
segment is determined from the minimization of
the weighted error sum E�F0� over all possible
fundamental frequency candidates F0:

3 Alternatively, the slope of the phase signal

S/ � 1

2p

R t0�T
t0

t/�t� dtR t0�T
t0

t2 dt
computed from linear regression can provide more noise-robust

estimates (the phase signal is the integral of the instantaneous

frequency signal: /�t� � 2p
R t
ÿ1 f �s� ds) (Potamianos, 1995).

Fig. 1. (a) The Mel-spaced ``dense'' Gabor ®lterbank used for MDA and (b) the average instantaneous frequency Fu�m� estimates for

each frequency band m shown superimposed on the Fourier spectrum for a 20 ms speech frame (/aa/ from ``dog'').
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Fig. 2. (a) Speech signal: ``Cats and dogs each hate the other''. (b) Narrowband speech spectrogram. (c) Time-frequency average

instantaneous frequency distribution (20 ms window). (d) MDA fundamental frequency contour.
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E�F0� � 1

F0

XN

n�1

a�mn� Fu�mn�
���� ÿ Fu�mn�

F0

�
�0:5

�
F0

����;
�7�

where b�c denotes truncation of the decimal part
and b� � 0:5c is the rounding operator, mn is the
center frequency of the nth Gabor ®lter in the ®l-
terbank, N is the total number of ®lters and Fu�mn�
is the average instantaneous frequency for the band
centered at frequency mn. The weighting factors
a�mn� � ha2�t; mn�iT measure the relative promi-
nence of the estimated harmonic Fu�mn�. In the error
sum of Eq. (7), deviations of the harmonic estimate
from the nearest multiple of the fundamental
frequency candidate are penalized. The estimated
fundamental frequency F0 provides the best match
between the short-time harmonic estimates
Fu�mn�; n � 1; 2; . . . and the fundamental frequency
multiples kF0, k � 1; 2; . . .. The algorithm produces
very detailed and smooth fundamental frequency
contours as shown in the example of Fig. 2(d)
for the speech signal in Fig. 2(a).

The pitch contours are ®ltered by a median ®l-
ter to correct few occurrences of `pitch-halving'.
Alternatively, a global error functional can be
de®ned for each voiced region that explicitly pe-
nalizes pitch discontinuities. The global error EG

to be minimized over all possible pitch paths F0�t�
is de®ned as

EG �
Zt2
t1

E�F0�t�� dt � k
Zt2
t1

dF0�t�
dt

� �2

dt; �8�

for each voiced region �t1; t2�. E is the error crite-
rion of Eq. (7) and k is a scalar that weights the
relative importance of the error terms. Smoother
pitch contours are obtained for large values of k.

The pitch estimates can be further re®ned (error
� 1 Hz) with a small increase in computational
complexity by pitch-synchronous averaging of the
instantaneous frequency signal f �t� in a second
pass of the pitch tracking algorithm. Speci®cally, it
is shown in Appendix A that when the analysis
window duration T is a multiple of the pitch pe-
riod the accuracy of the Fu estimate is

Fu � fM �O��4�; � � max
k 6�M
�ak=aM�; �9�

where fM is the most prominent harmonic in the
spectrum band (aM � maxk�ak�) and ak is the am-
plitude of the kth harmonic fk. Note that the error
is at worst O��� for arbitrary window duration T .
Pitch-synchronous re®nement of fundamental
frequency contours was shown to eliminate pitch
estimation errors for synthetic speech signals.

The MDA pitch tracker is related to pitch
trackers based on the sinusoidal model (McAulay
and Quatieri, 1986). Both algorithms estimate the
most prominent harmonics in the speech spectrum
and use a functional minimization approach to
determine the pitch contour (McAulay and Qua-
tieri, 1990; George, 1991). The MDA pitch tracker
is also related to auditory ®lterbank processing. In
(McEachern, 1992), McEachern speculates that
the fundamental frequency is perceived as a
weighted sum of the harmonic frequencies esti-
mated for each auditory ®lter through demodula-
tion. Quatieri et al. (1997) propose perceptually-
motivated demodulation algorithms that use the
output of two ®lters with overlapping frequency
responses.

The pitch tracker was evaluated on 37 utter-
ances from the TIMIT database. Each sentence
was spoken from a di�erent speaker (23 male, 14
female speakers). The MDA pitch tracker ®lter-
bank (as tested) consisted of 20 mel-spaced ®lters
spanning the 0±2000 Hz range. The MDA pitch
estimates were compared to the pitch estimates
computed by the ESPS signal processing package
(of Entropic Research Laboratory) based on
(Secrest and Doddington, 1983). A 40 ms analysis
window (updated every 10 ms) was used for both
pitch trackers. The following were the main results
from visual inspection of the tracks and from de-
tailed numerical comparisons:
· The tracks of the ESPS tracker were over-

smoothed, especially in the voiced±unvoiced
transition regions.

· The total number of segments where the esti-
mated pitch was approximately half or double
the actual value were twelve for the ESPS track-
er versus ®ve for the MDA pitch tracker (a seg-
ment includes at least four consecutive frames
with halving or doubling errors).

· The mean and standard deviation of the di�er-
ences in fundamental frequency estimates
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between the ESPS and MDA pitch trackers
(pitch doublings and halvings excluded) com-
puted over all sentences was 0.7 Hz (ESPS mi-
nus MDA) and 3.1 Hz, respectively. For each
sentence, the range for the mean di�erence
was 0±1.9 Hz and for the standard deviation
1.6±5.9 Hz.

Overall, the multiband ®ltering and demodulation
pitch tracking algorithm is simple, and produces
smooth and accurate fundamental frequency con-
tours.

3. The AM±FM modulation vocoder

The AM±FM modulation analysis±synthesis
system extracts three or four time-varying formant
bands rk�t� from the spectrum by ®ltering the
speech signal s�t� along the formant tracks. The
formant tracks are obtained from the multiband
demodulation formant tracking algorithm (see
Section 2.3). Filtering is performed by a bank of
Gabor ®lters with time-varying center frequencies
that follow the formant tracks. Next, the reso-
nance signals are demodulated to amplitude en-
velope jak�t�j and instantaneous frequency fk�t�
signals using the ESA. The information signals
jak�t�j, fk�t� have typical bandwidths of 400±
600 Hz and are decimated by a factor of 20:1 (for
16 kHz sampling frequency). Finally, the deci-
mated information signals are modeled and coded
(see Section 3.1). To synthesize the speech signal,
the phase is obtained as the running integral of the
instantaneous frequency, and the formant bands
r̂k�t� are reconstructed from the amplitude and
phase signals. The synthetic speech signal ŝ�t� is
the sum of the reconstructed formant bands. The
block diagram of the AM±FM modulation anal-
ysis±synthesis system is shown in Fig. 3.

Both the AM±FM vocoder and the parallel
formant vocoder (Holmes, 1983; Klatt, 1980)
model the speech signal as a superposition of for-
mant resonance signals. The important di�erence
is that instead of making the quasi±stationarity
assumption, the AM±FM vocoder describes each
formant resonance by two signals (amplitude and
frequency) that are allowed to vary instantaneously
with time. As a result, the AM±FM vocoder breaks

free of the source-linear ®lter assumption and can
e�ciently represent and model any general speech
resonance signal. Further, by retaining the cou-
pling between the excitation and vocal tract, the
AM±FM modulation model allows us more free-
dom to investigate nonlinear speech production
phenomena not modeled by the source-linear ®lter
model. The representation of a speech band by the
amplitude envelope and instantaneous frequency
signals is common ground between the AM±FM
vocoder and the phase vocoder (Flanagan,
1972, 1980). The main di�erence is that the AM±
FM vocoder uses a time-varying ®lterbank to ex-
tract the formant bands, while the phase vocoder
uses a bank of ®lters ®xed in frequency. In addi-
tion, most implementations of the phase vocoder
use narrow frequency bands that span one or two
harmonics, while each frequency band of the AM±
FM vocoder contains a formant spectral peak that
typically comprises of six to seven harmonics. As a
result, the structure of the information signals is
also di�erent, and novel algorithms have to be
devised to e�ciently capture the patterns in the
amplitude envelope and instantaneous frequency
signals of the AM±FM vocoder. In the next sec-
tion, e�cient modeling and coding algorithms for
the amplitude envelope and instantaneous fre-
quency signals of speech resonances are proposed.

3.1. Modeling the modulation signals

The amplitude envelope signals of di�erent
formants are highly correlated for voiced speech

Fig. 3. Block diagram of the modulation vocoder.

202 A. Potamianos, P. Maragos / Speech Communication 28 (1999) 195±209



and have a speci®c structure. To exploit this
structure a multipulse model (Atal and Remde,
1982) is used for modeling the amplitude envelope.
The multipulse excitation signals for amplitude
envelopes of di�erent formant bands are expected
to be coupled for voiced speech and loosely cou-
pled for unvoiced speech.

The model used for the amplitude envelope is

a�n� � u�n� � g�n� � h�n�;

u�n� �
XK

k�1

bkd�nÿ nk�;
�10�

where the impulse sequence u�n� is the excitation
signal, g�n� is the impulse response of a critically
damped second-order system and h�n� is the
baseband impulse response of the ®lter used for
extracting the corresponding resonance signal r�t�
(for a real Gabor ®lter h�t� � exp�ÿat2�). The
frequency response G�z� of the critically damped
system with impulse response g�n� is

G�z� � c0=1� c1zÿ1 � c2zÿ2;

c1 � ÿ2eÿpB=Fs ; c2 � eÿ2pB=Fs ; �11�

where B determines the rate of decay of the am-
plitude envelope signal and Fs is the sampling
frequency. The main reason for using a critically
damped second-order ®lter g�n� is the inability of
the unconstrained linear predictor to model the
perceptually important information of the enve-
lope signal a�n�. The impulse response of this one-
parameter critically damped system g�n� was
found to be a good approximation to the ampli-
tude envelope of real speech resonances for both
the attack and the (exponential) decay portions of
the signal. Finally, h�n� was introduced in the
amplitude envelope model of Eq. (10) to account
for the distortion introduced in a�t� from the
(Gabor) bandpass ®ltering procedure. The pulse
positions nk are computed from the analysis-by-
synthesis loop, while the amplitudes bk have a
closed form solution (Atal and Remde, 1982; Po-
tamianos, 1995) so that the mean square modeling
error

E �
XN

n�1

e�n�2 �
XN

n�1

�s�n� ÿ ŝ�n��2 �12�

is minimized, where N is the size of the speech
analysis frame. The analysis-by-synthesis loop is
shown in Fig. 4. Note that the use of a second
order linear model for the amplitude envelope is
only meant as a simple mathematical parameter-
ization of the amplitude and is not otherwise re-
lated to the physics of speech production. The
model can e�ciently capture amplitude modula-
tion patterns and o�ers control over the amplitude
modulation amount in speech resonances. For
example, the average signal to noise ratio for the
modeled amplitude envelope signals was 20 dB
when using about two pulses per pitch period. Five
sentences from the TIMIT database were used for
the test (same as in Section 2).

In Fig. 5(b) the amplitude envelope and the
corresponding excitation signals (computed as
described above) are shown for the ®rst and sec-
ond resonances of the speech signal in Fig. 5(a).
Two to three pulses per pitch period are used to
model the amplitude envelope signal. The excita-
tion pulses at the beginning of each pitch period
correspond to the primary excitation instants,
while the rest model secondary excitations and
nonlinear phenomena. Note that the primary pulse
positions for F1 and F2 are very close.

The instantaneous frequency signal is modeled
as the superposition of a slow- and a fast-varying
component. The slow-varying component models
the average formant frequency values and the fast-
varying component models frequency variations
around the formant frequency. A simple piece-wise
linear model is assumed for the fast-varying fre-
quency modulation component. Speci®cally, the
instantaneous frequency is allowed to take di�er-
ent values for the open and closed phase of voic-
ing. Note that such frequency modulation patterns

Fig. 4. Analysis-by-synthesis multipulse loop for the amplitude

envelope signal a�n� using a critically damped baseband second-

order ®lter.
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will cause corresponding bandwidth modulations
(according to the governing equations of the linear
second-order oscillator) that have to be accounted
for as changes in the rate of decay of the corre-
sponding amplitude envelope signal. In Fig. 5(c),
the (actual) instantaneous frequency signals and
formant tracks (dashed) are shown for F1 and F2.

3.2. Coding the modulation signals

To code the excitation signal u�n� the pulses are
classi®ed into `primary' and `secondary' groups
and each group is coded separately. Primary pulses
are typically located close to the major excitation
instants (one per pitch period for voiced speech),

while secondary pulses model secondary excita-
tions and nonlinear production phenomena. Pulses
are labeled as primary or secondary as follows:
(a) regions of steady-state voicing (probability of
voicing �1) are identi®ed, (b) for steady-state
voicing regions the primary pulses are labeled
based on their greater amplitudes and periodic
spacing, (c) starting from these voiced `anchor'
segments the neighboring primary pulses are de-
termined by searching for the pulse with the
greatest amplitude in a window centered one pitch
period apart from the current primary pulse; this
process is repeated both forward and backward in
time until the signal support is covered, (d) the
remaining pulses are classi®ed as secondary. The
distances between consecutive primary pulses form
a slowly time-varying contour (`pitch' contour)
which can be e�ciently quantized. Similarly, the
amplitudes of the excitation pulses form a
`smooth' contour and are quantized using PCM.
Secondary pulse positions are coded relatively to
the primary ones. Finally, the envelope decay rate
parameter B is sampled at 100 Hz and quantized
using PCM. Typically 3.5±6 kbits/s are used to
quantize the envelope signals with good detail. The
amplitude envelope signals are reconstructed from
the excitation signals u�n� using Eq. (10), where
g�n� is computed using the quantized B values and
h�n� is determined from the bandwidths of the
analysis ®lterbank.

As discussed in the previous section the in-
stantaneous frequency signals have two major
components: the average formant frequencies and
frequency modulation around the formant tracks.
The average formant frequencies are computed as
the amplitude weighted instantaneous frequency
average (Fw estimate). Short-time deviations from
the formant values are measured for the open and
closed excitation phase. Speci®cally, Fw is com-
puted separately for speech segments that lay be-
tween primary and secondary excitation locations
(roughly corresponding to the closed excitation
phase for voiced speech) and for segments between
secondary and primary excitation locations (open
phase). Thus, a piece-wise linear model is assumed
for the instantaneous frequency signals. The slow-
and fast-varying components of the instantaneous
frequency signals are coded separately. Formant

Fig. 5. (a) Speech signal, phoneme /ow/ from ``zero''. (b) Am-

plitude envelope and multipulse excitation signals for the ®rst

and second resonances. (c) Instantaneous frequency signals and

formant tracks for F1, F2.
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tracks are decimated to 60 Hz and quantized using
PCM. The frequency modulation components for
the open and closed phase are coded separately as
deviations from the average formant frequency
(only for the ®rst formant where FM is perceptu-
ally most important). Finally, the absolute phase
at primary excitation instants was judged to be
perceptually important for formant bands below
1000 Hz. Typically 1.3±3 kbits/s are alloted to the
instantaneous frequency signals. The instanta-
neous frequency signals are reconstructed by in-
terpolation of the quantized formant frequency
tracks. Then the FM component is added and the
phase signal is obtained as the running integral of
the instantaneous frequency signal. Finally, a
phase discontinuity is added at envelope minima
to guarantee that the phase at excitation instants
takes the appropriate value. A moving average
®lter is used to smooth the discontinuity. 4

The resonance signals are reconstructed from
the amplitude envelope and phase signals as in
Eq. (1), and added to obtain the coded speech
signal. A typical bit allocation scheme for the
various components of the AM±FM modulation
vocoder is shown in Table 1.

Informal listening tests were performed for both
the analysis-synthesis system and the vocoder (at
various bit rates) on sentences of the TIMIT data-
base spoken by di�erent speakers. A comparative
test was performed among ®ve non-expert listeners
to evaluate the speech quality at various stages of
the modeling and coding process. Each listener
was presented with eight (arbitrarily chosen)
TIMIT sentences. The listeners were given the
original signal (bandpassed between 200 and
5000 Hz) and then presented with the following
signals (in arbitrary order): (1) the sum of reso-
nance bands, (2) the coded signal (not quantized),
(3) the coded and quantized signal at 4.8 kbits/s,
(4) the DoD±LPC coded signal at 2.4 kbits/s

(Tremain, 1982) and (5) the DoD±CELP coded
signal at 4.8 kbits/s (Campbell et al., 1991). The
listeners rated the quality of each of the ®ve signals
from one to ®ve (best). The results were as follows
(the mean and variance of the ratings were nor-
malized for each speaker): (1) 4.1, (2) 3.6, (3) 2.5,
(4) 3.2 and (5) 4.0. Speech coded (but not quanti-
zed) by the AM±FM vocoder was rated between
the LPC and CELP vocoders, while quantized
speech was rated below both reference vocoders.
The low quality of the quantized speech is mostly
due to phase quantization artifacts in the low
frequency bands that disappear at higher bit rates.
More work is needed to improve the quantization
algorithms and to produce high quality speech
around 4.8 kbits/sec. The AM±FM analysis-syn-
thesis system (no coding or quantization) scores
the highest out of all systems.

Overall, the results are encouraging and show
that more work is needed to optimize the quanti-
zation algorithms, to improve modeling and to
test the vocoder under adverse conditions. Specif-
ically, the modeling of the very low (0±200 Hz) and
very high (>5 kHz) frequency regions is inade-
quate. Further, spectral zeros are not modeled.
Additional work is needed to improve the e�-
ciency of the coding and quantization algorithms
especially for the instantaneous frequency signals

4 The instantaneous phase signal is discontinuous at excita-

tion instants, or equivalently the instantaneous frequency signal

(being the derivative of the phase) presents a single or double

spike. When estimating the instantaneous frequency the

discontinuity is smoothed as a side-e�ect of band-pass ®ltering.

This e�ect is reproduced when coding and quantizing the

instantaneous frequency signal (see also (Potamianos, 1995)).

Table 1

A typical bit allocation scheme for the AM±FM modulation

vocoder

Information source bits/sec

Amplitude envelope

Envelope excitation

Primary excitation

Position 550

Amplitude 1400

Secondary excitation

Position 275

Amplitude 700

Envelope rate of decay B 200

Instantaneous frequency

Average formant frequency 1270

Frequency modulation (F1 only) 240

Phase at primary excitation (F1 only) 260

Total 4895
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in order to produce high-quality coded speech at
4.8±9.6 kbits/sec. However, even with the current
simple implementation, the AM±FM analysis-
synthesis system produces natural speech and
provides the test-bed for the perceptual impor-
tance of modulations in speech.

4. Discussion

In this section, the perceptual importance of
amplitude and frequency modulations is discussed.
First we present preliminary results that show that
modulation patterns are both speaker and phone
dependent and could provide important perceptual
cues for noise-corrupted or bandpassed speech.
Further, alternative ways of modeling the ampli-
tude and frequency modulation patterns are pro-
posed.

From informal listening tests it was veri®ed that
the amplitude and frequency modulation of speech
resonances are perceptually important for pro-
ducing natural sounding speech. From preliminary
experiments on synthetic speech and sentences
from the TIMIT database using the AM±FM
modulation vocoder it was determined that am-
plitude modulations convey both phonemic and
speaker-dependent information (see also next pa-
ragraph). For bandpassed synthetic speech (with
only a single formant on average in the passband)
it was shown that adding amplitude modulations
can alter the perceived phonemic quality of
the sound. The existence of complementary
information in resonance modulations may be the
main reason for the increased intelligibility of
noise-corrupted natural speech versus (identically
corrupted) speech produced by a formant synthe-
sizer.

The speaker and phone dependency of ampli-
tude modulation patterns was veri®ed by con-
ducting a preliminary analysis of 120 sentences of
the TIMIT database collected from 12 male
speakers (10 sentences per speaker) using the AM±
FM modulation vocoder. Each sentence was ana-
lyzed using the techniques outlined in the previous
sections. For each sentence in the database, the
primary and secondary pulse locations and am-
plitudes were computed for each formant reso-

nance amplitude envelope signal (F1, F2 and F3).
Next the average ratio of the secondary to primary
excitation pulse amplitude was computed as a
rough estimate of the amplitude modulation index.
The modulation index estimate was computed for
15 monophtongal vowels and diphthongs (using
the phonemic segmentation and labels provided
with the TIMIT database). Average modulation
index estimates were computed for each phone, for
each speaker, and for each left and right phonemic
group context. It was found that the amount of
modulation in each band was speaker-dependent
ranging: 13±24% (F1), 14±40% (F2) and 9±40%
(F3). Average AM index values for all 120 sen-
tences analyzed were 16% (F1) and 23% (F2) and
23% (F3). The range of phone-dependent AM in-
dex estimates was 13±19% (F1), 17±30% (F2) and
17±30% (F3). Phonemes that displayed the highest
amount of modulation were /ao/, /ax/, while /aw/,
/eh/ displayed the lowest. Finally, context-depen-
dent AM modulation indexes were computed. The
following left and right contexts were investigated:
silence, vowel, plosive, nasal, glide, voiced fricative
and unvoiced fricative. The AM index was found
to be 30% higher than average for segments pre-
ceded or followed by silence. Increased AM
amounts were also found in the context of glides
and voiced fricatives. This is to be expected since
the dynamics of speech production are changing
rapidly during voiced-unvoiced transitions, si-
lence-speech transitions, and glides. Further in-
vestigation is required to understand the
importance of the modulation patterns for speech
synthesis and recognition.

The AM±FM analysis-synthesis system is a
valuable tool for measuring modulations in speech
resonances. Alternatively, one can investigate
modulations in speech using a frequency domain
model. Amplitude modulations appear in the DFT
spectrum as a departure from the shape of the
linear formant peak, e.g., as an asymmetric for-
mant peak or a peak were certain harmonics have
reduced amplitudes. A simple short-time model
that can quantify such phenomena is the sinusoi-
dal model (McAulay and Quatieri, 1986) applied
to the formant resonance signal, i.e., express the
speech resonance signal as a superposition of si-
nusoids and quantify the modulation amount by
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the di�erence between the amplitudes of the sinu-
soids for an actual and synthetic speech resonance.
Similar ideas have been discussed in (Quatieri,
1997). The model can be further enhanced to ac-
count for time-varying modulation amounts. Fre-
quency modulation is not clearly visible from the
DFT of the signal. A sinusoidal model with
modulated (time-varying) amplitudes in the anal-
ysis window could capture some of the frequency
modulation phenomena. By combining sinusoidal
and resonance modeling additional intuition can
be gained in the physical signi®cance of modula-
tions in speech.

5. Conclusions

The AM±FM modulation model and multiband
demodulation were successfully applied to speech
analysis. The multiband demodulation pitch
tracking algorithm was proposed that produces
smooth and accurate fundamental frequency con-
tours. E�cient modeling and coding algorithms
were proposed for the amplitude envelope and
instantaneous frequency resonance signals of the
AM±FM modulation vocoder. The vocoder pro-
duces natural speech at 4.8±9.6 kbits/sec. Ampli-
tude and frequency modulations were shown to
convey both phonemic and speaker-dependent
information and to be perceptually important for
producing natural sounding speech.

Overall, the AM±FM analysis±synthesis system
accounts for a variety of speech production phe-
nomena not described in linear models and, as a
result, produces speech of natural quality. The
detailed parametric modeling of the amplitude
envelope and instantaneous frequency signals of-
fers the means to study the perceptual e�ects of
amplitude and frequency modulations in speech
resonances. The AM±FM analysis-synthesis sys-
tem o�ers the possibility to modify speech, i.e.,
altering the speakers characteristic or the speaking
style, by changing the amount of amplitude and
frequency modulation in formants. More work is
underway to quantify how such modi®cations af-
fect the speech quality. An application area of the
vocoder is text-to-speech (TTS) synthesis and
speaker transformation.

Appendix A

Consider the sum of N sinusoids with constant 5

amplitudes an and frequencies fn,

r�t� �
X

n

an cos �2pfnt � hn�; �A:1�

where hn are arbitrary phase constants. Assuming
that the bandwidth of r�t� is much smaller than
minn�fn�, the analytical signal z�t� estimates for the
amplitude envelope jaH�t�j and instantaneous fre-
quency fH�t� computed from the Hilbert transform
are

jaH�t�j � jz�t�j �
X

n

X
k

anak cos �D/nk�t��
 !1=2

;

�A:2�

fH�t� � d

dt
\z�t�

�
X

n

X
k

fnanak cos �D/nk�t��=�aH�t��2; �A:3�

where D/nk�t� � 2p�fn ÿ fk�t � �hn ÿ hk�.
We will show next that under the assumption

jfi�1 ÿ fij � F0, i � 1; . . . ;N ÿ 1;

Fu � 1

T

Zt�T

t

fH�t� dt � fm;

if am � a1; . . . ; amÿ1; am�1; . . . ; aN ; �A:4�

i.e., for a sum of harmonically related sinusoids
the unweighted instantaneous frequency Fu locks
onto the frequency of the sinusoid with the
greatest amplitude. By expanding the denominator
in Eq. (A3) in a Taylor series

5 Note that the results presented in Appendix A hold

approximately for sums of sinusoids with time-varying ampli-

tudes an�t� and frequencies fn�t�, provided that an�t� and fn�t�
are slowly-varying compared to cos �2pfnt�. In this case, an�t�
and fn�t� can be assumed constant when di�erentiating or

integrating in the presence of the fast varying cos �2pfnt� term

(two time-scale analysis).
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fH�t� � fm

 
�
X
n6�m

an

am
�fn � fm� cos �D/nm�

�
X
n 6�m

an

am

� �2

fn �
X
n 6�m

X
k 6�m;n

an ak

a2
m

fk cos �D/nk�
!

� 1

 
ÿ 2
X
n6�m

an

am
cos �D/nm� ÿ

X
n6�m

an

am

� �2

ÿ
X
n 6�m

X
k 6�m;n

an ak

a2
m

cos �D/nk�

� 4
X
n6�m

an

am

� �2

cos2�D/nm� � h:o:t:

!
:

We further assume that the averaging window
duration T is proportional to the `pitch period'
of the sum of the sinusoids, i.e., T / 1=F0

(pitch-synchronous analysis). In this caseR t�T
t cos �D/nk�dt � 0 and

R t�T
t cos �D/nk� cos �D/ij�dt

� 0, for �n; k� 6� �i; j�. Carrying out the algebra

Fu � 1

T

Zt�T

t

fH�t� dt

� fm ÿ
X
n6�m

an

am

� �2

fm � 2
X
n6�m

�an

am
�2 fm

ÿ
X
n6�m

an

am

� �2

�fn � fm�

�
X
n6�m

an

am

� �2

fn � h:o:t:

� fm � O��4�;
am � a1; . . . ; amÿ1; am�1; . . . ; aN ;

since the O��2� terms cancel out, where
� � maxk 6�m�ak=am�. Thus, for pitch-synchronous
analysis, the approximation error is O��4�. In
practice, the duration of the averaging window
used is not a multiple of the `pitch period' and the
exact values of Fu depend on the averaging window
boundaries. For pitch-asynchronous analysis, the
order of the approximation error is O���.

Similarly, for the weighted estimator Fw one
may write

Fw �
R t�T

t fH�t��aH�t��2 dtR t�T
t �aH�t��2 dt

�
P

n

P
k fnanak

R t�T
t cos �D/nk�t�� dtP

n

P
k anak

R t�T
t cos �D/nk�t�� dt

�
P

n fna2
nP

n a2
n

; �A:5�

i.e., the weighted instantaneous frequency Fw

equals the amplitude weighted average of the
harmonic frequencies.
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