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Abstract—Image segmentation remains an important, but
hard-to-solve, problem since it appears to be application depen-
dent with usually no a priori information available regarding
the image structure. Moreover, the increasing demands of image
analysis tasks in terms of segmentation results’ quality introduce
the necessity of employing multiple cues for improving image
segmentation results. In this paper, we attempt to incorporate
cues such as intensity contrast, region size, and texture in the
segmentation procedure and derive improved results compared
to using individual cues separately. We emphasize on the overall
segmentation procedure, and we propose efficient simplification
operators and feature extraction schemes, capable of quantifying
important characteristics, like geometrical complexity, rate of
change in local contrast variations, and orientation, that eventu-
ally favor the final segmentation result. Based on the well-known
morphological paradigm of watershed transform segmentation,
which exploits intensity contrast and region size criteria, we inves-
tigate its partial differential equation (PDE) formulation, and we
extend it in order to satisfy various flooding criteria, thus making
it applicable to a wider range of images. Going a step further, we
introduce a segmentation scheme that couples contrast criteria in
flooding with texture information. The modeling of the proposed
scheme is done via PDEs and the efficient incorporation of the
available contrast and texture information, is done by selecting
an appropriate cartoon-texture image decomposition scheme.
The proposed coupled segmentation scheme is driven by two
separate image components: artoon (for contrast information)
and texture component . The performance of the proposed
segmentation scheme is demonstrated through a complete set of
experimental results and substantiated using quantitative and
qualitative criteria.

Index Terms—Feature extraction, morphological filtering,
partial differential equation (PDE), segmentation, topographic
flooding, + image decomposition, watershed.

I. INTRODUCTION

IMAGE segmentation is one of the most important, yet com-
plicated, problems in the field of computer vision. Its crit-

ical role is derived by the fact that it forms the basis for most
subsequent image analysis tasks. It is commonly accepted that
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the term segmentation covers a wider range of image processing
tasks than the final partitioning of the image plane into disjoint
regions. In this paper, we treat the segmentation problem as a
set of procedures that need to be followed starting from the ini-
tial image and yielding the final partitioning perceived either
as a region map or a segmentation boundary. Thus, the task of
segmentation, independently of the method used to achieve the
partitioning, can be divided into the following stages: i) image
preprocessing, ii) feature extraction, and iii) partitioning into
disjoint regions. The preprocessing stage encompasses a wide
range of subtasks such as image simplification (enhancement,
smoothing, noise reduction, redundant information removal) re-
sulting in an image consisting mostly of flat and large regions,
as well as image decomposition into constituent parts. The fea-
ture extraction deals with gradient features computation, tex-
ture measurements, markers extraction (small homogeneous re-
gions), whereas the final stage of partitioning is the application
of the selected segmentation algorithm so as to produce a re-
gion map of the image. Optionally, there can be a subsequent
stage, namely postprocessing, where the segmented image can
be furthered processed according to predefined criteria relevant
to region properties, possibly merge or suppress undesired re-
gions so as to lead to the final result.

Many different segmentation methodologies have been pro-
posed and, depending on their approach to the problem, can
be characterized either as boundary-based methods relying on
the information provided by the object/region boundaries, or
region-based exploiting information provided by the entire re-
gions (contrast, texture properties, etc). A well-known region-
based segmentation methodology, which has attracted the in-
terest of many researchers for years, is the watershed transform
[1]–[3], initially proposed as the solution to segmentation in
the field of mathematical morphology. Throughout the years,
it has been established as a very robust and efficient segmenta-
tion method, applicable to many different cases, especially when
coupled with other nonlinear multiscale morphological oper-
ators. Compared to other methodologies, watershed has sev-
eral advantages, including proper handling of gaps and place-
ment of boundaries at most significant edges. From the mor-
phological point of view, it is the process according to which
the image is considered as a topographic relief and flooded uni-
formly from predefined sources (such as regional minima or
selected markers). Aside from its implementations either via
immersion simulations [2] or hierarchical queues [3] using an
ordering relation in flooding, the watershed transform has also
been modeled in a continuous way employing the eikonal par-
tial differential equation (PDE) [4]–[6]. There are two cate-
gories of numerical implementations that can be used to solve
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the eikonal equation: i) implementations based on discrete gray-
weighted distance transform (GWDT) with chamfer metrics [5]
and ii) implementations based on PDEs modeling curve evo-
lution with level sets [7], [6], [8]. The rationale for using PDEs
lies in better and more intuitive mathematical modeling, connec-
tions with physics, and better approximation to the continuous
geometry of the problem. Besides the efforts made to investi-
gate the watershed transform and formulate it using different
tools than the ones provided by mathematical morphology, there
have been many attempts in the direction of integrating water-
shed with other segmentation approaches, such as watersnakes
[9], where a connection between the watershed and minimiza-
tion of an energy function is established.

Motivated by the efficacy of watershed transform along with
latest trends in image segmentation research that encourage
combination of different cues [10]–[12], we try to incorporate
the generalized flooding concept of watershed, thus exploiting
intensity contrast and region size criteria [13] with other per-
ceptually meaningful image characteristics, such as texture,
aiming at improved segmentation. Additionally, we aim at
integrating the aforementioned ideas with PDE modeling.
Preliminary results of this effort have been shown in [14], with
applications in specialized data of soilsection images in [15].
Moreover, in order to strengthen the segmentation efficiency,
we treat the segmentation problem as set of subtasks, empha-
sizing particularly on every segmentation stage, utilizing the
most appropriate set of tools for the image processing tasks,
considering also the fact that the quality of each stage’s output
affects the overall segmentation result.

In this paper, we propose well-motivated and efficient image
simplification, texture modeling, image decomposition, and
marker extraction techniques as necessary tasks of the preseg-
mentation part of image analysis. Regarding the stage of par-
titioning algorithm application, we focus on watershed-based
segmentation techniques. Specifically, we investigate the PDE
watershed formulation and extend it in order to satisfy other
flooding criteria, such as region size and volume, thus making
it applicable to a wider range of images. Additionally, we
incorporate different cues in watershed flooding by selecting
a leveling-based image decomposition as an efficient
way to separate image geometry from texture. We propose a
watershed-like segmentation scheme that couples contrast, size,
and texture information driven by two separate image compo-
nents: cartoon (for contrast information) and texture . The
modeling of the proposed scheme is done via PDEs using ideas
from curve evolution and level sets. The implementation is
done by using and adapting specialized level set methodologies,
thus ensuring speed and reduced computational cost. Through
a complete set of experimental results, we demonstrate the per-
formance of the proposed segmentation scheme. Furthermore,
we provide quantitative and qualitative criteria that substantiate
the way the proposed methodology outperforms the established
watershed transform.

The main contributions of the presented research work can be
summarized as follows:

1) PDE-based formulation and extension of flooding methods
for generalized watershed type segmentation;

2) PDE-based formulation of uniform volume flooding;

3) PDE geometry and texture driven segmentation;
4) extension of fast marching level-set-based method (FMM)

to accommodate the implementation of the above PDEs;
5) multiple region PDE level-set segmentation;
6) integrated segmentation system that combines 1) and 2),

plus state-of-the-art multiscale methods for preprocessing
and feature/marker extraction;

7) improved evaluation criteria used over a large variety of
images.

The rest of the paper is organized as follows. Section II pro-
vides the methodologies used for image simplification, decom-
position and feature extraction, thus preparing the image for the
application of segmentation algorithm. In Section III, we inves-
tigate the generalized watershed implemented via PDEs and ex-
tend it to incorporate varying flooding criteria, whereas, in Sec-
tion IV, we diversify the previously presented ideas to embody
contrast, size and texture criteria in a single segmentation algo-
rithm. In Section V, we provide mature experiments as well as
quality criteria and comparative results.

II. IMAGE SIMPLIFICATION, DECOMPOSITION,
AND FEATURE EXTRACTION

It is almost impossible to avoid the presence of noise in
an image usually introduced in the formation, acquisition,
transmission process etc, and visualized either as distortion,
artifacts or meaningless structures. Images may also contain
texture in the form of repeated patterns of small scale details.
Depending on what the human visual system can classify as
salient areas or meaningful objects, not all image structures are
of the same importance. Therefore, an image needs elaborate
processing so that its structure is simplified but at the same
time key features are accurately preserved. Additionally, it can
be further processed and decomposed to its constituent com-
ponents, each of which encapsulates information about distinct
prominent image characteristics, such as contrast, texture, etc.
The aforementioned processing aids the feature extraction pro-
cedure as well as the final partitioning stage. Next, we provide a
detailed discussion about each of the subtasks mentioned above
focusing on the employed tools.

A. Image Simplification

The simplification stage is concerned with noise and redun-
dant information removal, resulting in an image with smoother
structure, easier to handle and more appropriate for further pro-
cessing such as feature extraction and partitioning. The filtering
the image has to undergo should retain meaningful informa-
tion but at the same time suppress pointless structures without
causing boundary blurring or contour displacement. An effi-
cient family of filters that have the aforementioned properties
are the morphological connected operators. These are region-
based filtering tools that do not modify individual pixel values
but directly act on connected components of the space where
the image is constant, referred to as flat zones. Intuitively con-
nected operators can merge flat zones by removing boundaries
between them, but cannot create new boundaries nor shift ex-
isting ones, therefore having very good contour preservation
properties. The related literature consists of theoretical studies
[16]–[21], and algorithm developments [22]–[24]. For image
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simplification, we use the following connected operators for
contrast/area/volume filtering and levelings.

1) Contrast Filtering—Reconstruction Operators: The
graylevel reconstruction opening of an image given a
marker signal is

(1)

where is the conditional dilation
of by a unit disk constrained by . The above definition
is valid both for continuous and discrete1 images. Dually, the
reconstruction closing of given a marker is

(2)

where is the conditional erosion of
by constrained by . For contrast filtering, we set the marker

and for reconstruction opening and
closing, respectively. The parameter is a constant determined
empirically to match the image peaks/valleys range and controls
the contrast of the bright/dark connected components that will
be merged.

Generalized openings and closings are often com-
bined sequentially at increasing scale
to produce alternating sequential filters (ASF) [16]:

. Choosing reconstruc-
tion openings and closings yields an ASF that accomplishes
dual reconstruction at sequential multiple scales.

2) Self-Dual Filtering—Levelings: The above reconstruc-
tion operators are asymmetric since they allow simplification
of either bright or dark image components. Symmetric simpli-
fication of image components requires self-dual filters, such
as the levelings, which are nonlinear, increasing, and idempo-
tent filters with many interesting scale-space properties [19],
[20]. Levelings treat symmetrically the image foreground and
background; further, they can be analyzed as composition of
reconstruction opening and closing. They were defined geomet-
rically in [19] via the property that the variation of the leveling
between two neighbor pixels is bracketed by a larger same-sign
variation in the reference image . In [21], they were defined
algebraically as fixed points of iterated triphase operators
that switch among three phases, an expansion, a contraction,
and the reference . They operate on a reference image by
locally expanding/shrinking an initial marker image , and
globally constraining the marker evolution by the reference
image. In the simplest case, iterations of the image operator

, where (resp., ) is a
dilation (resp., erosion) of by a small disk, yield in the limit
the leveling of w.r.t.

(3)

1For example, the conditional dilation of a discrete marker image M [i; j]
w.r.t. a reference image I[i; j] is implemented as follows:

� (M j I)[i; j] = min I[i; j]; max M [i� k; j � `]

whereB is the 5-pixel (9-pixel) diamond (square) for 4-type (8-type) foreground
connectivity.

Levelings preserve the coupling and sense of variation in
neighbor image values and do not create any new regional
maxima or minima across scales. In practice, they can recon-
struct whole image objects with exact preservation of their
boundaries and edges. In this reconstruction process, they
simplify the original image by completely eliminating smaller
objects inside which the marker cannot fit.

3) Area Filtering—Area Operators: The area opening
(closing) of size keeps only the light (dark) connected
components whose area (number of pixels) is equal or greater
than a threshold . For a binary image-set , its area opening
is defined by where

is the disjoint union of connected components
. By complementation, the binary area closing is defined as

. The grayscale area opening and closing
can be defined based on the binary area opening and closing
definition via threshold superposition

(4)

(5)

where are the upper level sets of the image by thresh-
olding it at level

(6)

4) Volume Filtering—Volume Operators: A combination
of the above contrast and size connected operators yields the
volume reconstruction operator. Volume operators remove
connected components from the image whose volume is below
a certain threshold. They are defined as

(7)

(8)

where, in the binary case, if we define
with being connected

components. Volume operators preserve the formal properties of
openings and closings and can be used as a mean of simplifica-
tion filtering that balances contrast and size criteria.

B. Image Decomposition

In many problems of image analysis, the observed image
may contain texture and/or noise. Texture can be defined as de-
terministically or stochastically repeated patterns of small scale
details, whereas noise is also a pattern of small scale details,
but of random, uncorrelated values. The simplification step ex-
tracts the most meaningful information from , resulting to a
cartoon-like image with bounded variation that retains all un-
derlying structure, formed by homogeneous regions with sharp
boundaries. In other words, the image retains all contrast
and boundary information but loses all small scale patterns de-
tails, which may otherwise be very important especially if they
represent texture. In many image analysis tasks, there is a ten-
dency to decompose the image into a sum of functions with dif-
ferent basic characteristics, such as contrast, texture and pos-
sibly noise. The resulting model is a linear combination of the
form: , where is the observed image, is a
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simplified sketchy approximation of is the texture compo-
nent and is noise [25]. In denoising applications, is com-
puted as a smooth approximation of [26]–[28], whereas the
rest of the components are not kept. In other cases, both and

are extracted from via a constraint variational minimization
framework [28], [25], [29].

Based on the aforementioned image decomposition model,
given the image and a simplification method to obtain (as
explained in Section II-A), we can theoretically extract the tex-
ture component . Initially, we perform an image denoising
scheme that does not affect image structure such as ASF fil-
tering based on reconstruction, described in Section II-A1. The
output image is theoretically free from noise and can be consid-
ered as the linear combination of the contrast and texture
components. Therefore, the texture component can be obtained
as the image residual: . Several nonlinear edge-pre-
serving image smoothing schemes can create cartoon approxi-
mations of an image such as anisotropic diffusion and image se-
lective smoothing [27], [30]. To obtain the cartoon component

, we apply the leveling operator of (3) on the initial image,
, motivated by its interesting properties and the

fact that levelings are already employed in the image simplifica-
tion stage. We construct multiscale cartoons by using multi-
scale levelings [20] based on a sequence of multiscale markers

, obtained from sampling a Gaussian scale-space. The cor-
responding residuals constitute a hierarchy of
multiscale texture components. Additionally, anisotropic dif-
fusion [27] can be considered as an alternative marker selec-
tion method. At each sequence step the leveling marker is ob-
tained by a version of the image with blurred regions but ade-
quately preserved boundaries, caused by the constrained diffu-
sion process.

Other alternative schemes for image decomposition can be
found in [31] and [32]. It should be noted that the scope of this
paper is not to find the optimum decomposition as done
in [25] and [29], but some efficient decomposition scheme that
produces the texture component and couples with segmenta-
tion methods. An example of this image decomposition scheme
can be seen in Fig. 2.

C. Feature Extraction

The feature extraction stage deals with the extraction of spe-
cial image features that facilitate the final segmentation step and
requires a more severe, but detailed, processing of the image. As
features, we denote regions of interest, gradients, texture mea-
surements, described as follows.

1) Gradient Features: High values of the image’s gradient
are indicative of abrupt intensity changes and specify possible
object/region contours. Additionally, the topographic relief,
emerging from the gradient magnitude function is used in the
flooding process, which, in turn, leads to the final segmentation
map. Many different types of gradients have been extensively
used in the edge detection framework. Among them, we choose
the morphological gradient for its robust behavior, low com-
plexity, and better segmentation results compared to other edge
strength operators, such as . The morphological gra-
dient is computed as the magnitude of the dilated version of the

Fig. 1. Geometric filtering algorithms: Area and volume opening.

Fig. 2. Image decomposition I = U + V using levelings.

image (after simplification) minus the eroded version of it, nor-
malized by the diameter of the elementary structuring element
used in the morphological operations (that is, a 9-pixel square
or a 5-pixel diamond, having a diameter equal to 2). This is
expressed mathematically as .

2) Texture Features: In Section II-B, we delineated a way of
acquiring texture information from the observed image, under
an image decomposition scheme. Although all appropriate in-
formation is theoretically contained in texture component , it
is in a rough and unprocessed form. Therefore, we need a tex-
ture analysis and modeling scheme capable of quantifying tex-
ture characteristics.
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A way to model and analyze the existing texture patterns of an
image is by assuming they are narrowband 2-D AM-FM signals
[33], [34] of the form . For wideband signals

, we assume that they are a sum of 2-D nonstationary
sines , with a spatially
varying amplitude and a spatially varying instanta-
neous frequency vector

. In particular, the amplitude is used to model local
image contrast and the frequency vector contains rich infor-
mation about the locally emergent spatial frequencies. An
efficient way to estimate the 2-D amplitude and frequency
signals was developed in [33] based on the energy operator

, which is a multidimensional ex-
tension of the 1-D Teager energy operator. Applying to
a 2-D AM—FM signal yields ,
which equals the product of the instantaneous amplitude and
frequency magnitude squared and may be called the texture
modulation energy. It should be noted here that is not di-
rectly applied on the wideband signal , but on narrowband
versions of it, filtered through a 2-D Gabor filterbank [35].
The 2-D Gabor filters are characterized by impulse response of
the form , where

are the rms bandwidths in each dimension and
is the -th filter’s central frequency pair. The filters

are uniformly arranged in the spatial frequency domain, in a
polar wavelet-like tessellation, with equal and directional sym-
metric bandwidths and cover densely the frequency domain.
Representations indicative of the dominant texture components
are obtained by an energy tracking mechanism in the multidi-
mensional feature space consisting of the filter responses. The
filtered texture components are subjected to energy measure-
ments via the 2-D Energy Operator . The energies are then
averaged by a local averaging filter and are subjected to
pixelwise comparisons. The maximum average teager energy,
given by (where

denotes convolution) is kept, as a means of tracking the
most active texture component. The derived is a slowly
varying indication of texture modulation energy, which can be
classified among different energy levels. It provides both local
and global texture information and tracks the most dominant
texture components along multiple modulation bands [36].
The derived image textural feature is capable of quantifying
important characteristics like geometrical complexity, rate of
change in local contrast variations and texture scale.

3) Markers: Markers are predefined image locations that
serve as staring points of the region-growing procedure. They
grow in time according to a set of specified criteria until the
image plane is totally covered by them. In the case of water-
shed-like region growing, the marker set is a binary set, where
each connected component corresponds to a region of interest.
Since markers only serve as starting points of the growing proce-
dure, we are only interested in their location and not their shape.
However, their location must be exact corresponding to regions
and objects of interest and not point to insignificant structures
or texture edges.

In watershed-like region growing, the simplest markers that
can be employed are the regional minima of the gradient image.
However, it is often the case that the minima are extremely nu-

merous, leading to image oversegmentation, which is consid-
ered as problematic. Hence, in most practical cases, the water-
shed will take as sources of the flooding a smaller set of markers,
which have been identified by a preliminary analysis step as in-
side particles of the regions or objects that need to be extracted
via segmentation. The advantage of the aforementioned marker
adaptation is robustness, since the result is independent of the
shape or the placement of the markers in the zones of interest.

In the literature, there are several marker extraction method-
ologies, depending on the application. It is common practice that
markers are chosen as region where some homogeneity criterion
is constant or a key characteristic is of certain strength. Markers
can be chosen via a linear methodology to correspond to image
key points, such as blobs, ridges, and corners, that remain scale
invariant [37], [38]. Alternatively, they can be extracted in a non-
linear way as flat/quasi-flat zones of the morphological gradient
function [18] and morphological scale-invariant features.

In our research work, we follow the direction of nonlinear
morphological marker extraction methodologies, motivated by
their edge, contour and geometric feature preservation proper-
ties, their rigorous formulation, computational simplicity, fast
implementation and performance that is better or similar to other
schemes. Depending on the nature of image under study, we
emphasize on contrast, volume and texture-based markers, i.e.,
image areas where the homogeneity criterion is contrast, volume
(area and contrast) and texture, respectively. In all three cases,
we extract markers via a reconstruction procedure as valleys or
peaks of a image transform that resembles one of the aforemen-
tioned characteristics. In all cases, the scale is incorporated in
the structuring element or reconstruction controlling parameter.
Specifically, we distinguish the following cases.

• Contrast, Area, or Volume-Based Markers. Markers are es-
timated as valleys (or peaks) of certain strength of a gen-
eralized bottom (top) hat transform defined as:

, where is a generalized closing and is an
intensity image (initial or simplified). Similarly, the top hat
transform is where is a general-
ized opening. Depending on what kind of closing/opening
transform we choose, we obtain: a) contrast markers if
the generalized closing is based on reconstruction, i.e.,

that is where the parameter con-
trols the contrast (valley depth); b) area markers if is
area closing; c) volume markers if is volume closing,
in which case contrast and area criteria are exploited.

• Texture-Based Markers. Again, markers are estimated as
peaks of an image transform that relies on texture charac-
teristics. Ways to compute this transform were illustrated in
Section II-B, where we obtained a texture component via an
imagedecompositionmodel,whereas, inSection II-C2, tex-
turepresencewasexploitedviaamultibandenergyoperator.
Therefore, peaks (valleys) either of the texture component

or its dominant modulation energy are extracted as highly
(poorly) textured regions. The peak (valley) extraction is
based on a reconstruction procedure as discussed earlier.

III. GENERALIZED FLOODING PDE SEGMENTATION

In mathematical morphology, the watershed transform is
viewed as the flooding process of the topographic surface of
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the image, where the intensity defines the altitude of the relief.
Flooding is achieved by immersing the surface into water,
letting the water invade through pierced minima. The under-
lying idea is the following: a) a gradient image of the scene is
constructed; b) for each object of interest or homogeneous re-
gion, a marker is detected, either in an automatic or interactive
manner; c) the watershed lines associated to the markers are
constructed. The flooding process of image gradient surface
starts with waves emanating from the set of markers, and at
points where the waves meet each other, the segmentation
boundaries are formed.

Based on the criteria governing the flooding process, different
types of segmentation can occur with varying characteristics in
their results. By the term flooding criterion, we refer to the char-
acteristic that all lakes (associated with the flooding sources)
share with respect to water, such as altitude/height (contrast cri-
teria), area (size criteria), or volume (contrast and area criteria)
[39]. The most common type of flooding that forms the basis
of all traditional morphological segmentation schemes is ob-
tained when the water altitude variation is at the same level for
all lakes, known as uniform height flooding. In the next para-
graphs we investigate the classical case of uniform height wa-
tershed flooding and we introduce the case of uniform volume
watershed flooding modeled via PDEs, where contrast and size
criteria are balanced with respect to the topographic relief. In
both cases, we derive the corresponding PDE formulations of
the floodings viewed as curve evolution processes. Whereas uni-
form height watershed flooding has already been studied in the
continuous domain and modeled via PDEs [4]–[6], we consider
uniform volume watershed flooding PDE formulation to be an
innovation introduced by our research work. For scientific con-
sistency and smooth transition purposes, we next describe both
cases of flooding, emphasizing on PDE formulation and imple-
mentation of uniform volume flooding.

A. Uniform Height Flooding

We first consider the case of flooding the 1-D function
shown in Fig. 3(a). We pierce this function at one of its

regional minima, as shown in Fig. 3(a), and then we im-
merse it in water with constant vertical speed. In this case
the water altitude at each time instance is uniform. Let
be the height difference from one time instance to another.
When the flooding of the function is done with uniform
height speed, we have . Given that

, we have

(9)

By the term , we refer to the horizontal velocity, by which the
level sets of the function propagate in time.

Let us now consider the case of a 2-D function. Shown in
Fig. 3(b) is the planar projection of a lake of a 2-D function,
flooded under the constraint of uniform height. The boundary
of the lake at time instance is the set of points of the
closed planar curve represented by its position vector . This
curve models the propagation of a wave emanating from the
lake. Based on (9) and considering that in the 2-D case i)

Fig. 3. (a) Lakes of 1-D function; L(t) is the length of level sets. (b) Planar
projection of a lake of 2-D function; A(t) is the area of level sets.

becomes the displacement normal to the level curves of the func-
tion and ii) becomes , we model the propagation of the
curve with the following PDE:

(10)

where is the unit outward normal vector to the curve.
Following the level set formulation proposed by Osher and

Sethian [40], we embed this evolving planar curve as the zero-
level curve of an evolving space-time function ; i.e.,

. Then the PDE that governs
the evolution of the obtained level function is

(11)

where is the space-dependent speed function given by
.

B. Uniform Volume Flooding

Considering the case of uniform volume speed flooding, the
main difference, compared to traditional watershed segmenta-
tion, is that during the flooding process the water height is not
at same level for all lakes. However, the water volume change
rate is constant, thus retaining the balance between area and
contrast characteristics. Following the same procedure as above
we flood the 1-D function of Fig. 3(a). We then have that

, which yields the horizontal ve-
locity

(12)

In the 2-D case of Fig. 3(b), where the curve models the
wave emanating from a lake flooded under the constraint of uni-
form volume speed becomes , which is the area en-
closed by the propagating wave at time . The curve evolution
PDE and the equivalent PDE level function are

(13)

(14)

where is the time and
space-dependent speed function. The product is
a measure of volume; thus, the speed of the evolving curve is
inversely proportional to the volume of the sources of the flood
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and the flood is slowed down by the factor . This means that
during the flooding process lakes with large volume are filled up
by water slowly whereas lakes with small volume are filled up
quickly. The evolution PDE (13) can be interpreted as a dilation
of the front with a varying radius structuring element. The radius

of the structuring element depends on
space and time .

C. Implementation Details and Experimental Results

The PDEs (10) and (13) are time-dependent and since in
both cases the evolving front’s speed is one-directional (ex-
panding fronts), we can consider the stationary formulation of
the embedding level function evolution PDEs (11) and (14)
with positive speed , which is known as eikonal PDE. The
problem then is to solve the equation
where is the minimum time
of arrival, at which the zero-level curve of the level function

crosses . In the two cases of flooding discussed
earlier, the resulting “stationary” eikonal-type PDEs are

(15)

A fast algorithm used to solve such PDEs is the FMM [41],
which provides an extremely fast way for solving eikonal equa-
tions. A similar algorithm was developed in the context of time-
optimal control [42].

The FMM methodology was adapted to accommodate our
scenario of multiple competing propagating curves that corre-
spond to boundaries of expanding markers. The propagation of
all curves is done simultaneously, under the constraint that a re-
gion covered by a front cannot be infiltrated by a different front.
The evolving fronts compete in the sense that a pixel is assigned
to the front that claims (reaches) it first. At places where two or
more fronts meet, a dam is erected to specify the segmentation
line. The multiple fronts propagate in time until convergence is
met when all pixels in the image domain have been assigned to
a front. Whereas in the case of uniform height flooding FMM is
easy to implement as done in [6], in the case of uniform volume
flooding solving the PDE
has the peculiarity of the pseudo time varying term .
This is why the fast marching algorithm has to be adapted so as
to take under consideration the multiple curve scenario as well
as the time-dependent area variations of the fronts. Every time
we “march” a front one pixel forward, its area is incremented;
thus, the corresponding area term has to be updated.

Experimental results of height and volume flooding segmen-
tation are illustrated in Fig. 5. The images shown in Fig. 5(a)
and (e) are synthetically produced by taking the distance trans-
form of the corresponding binary images and adding an arbi-
trary constant to each of their connected components, thus pro-
ducing graylevel images. For illustration purposes, on each syn-
thetic image we have superimposed a flooding source for each
object, shown in white color. Bright objects have high con-
trast/altitude compared to darker objects. In Fig. 5(b), the con-
tour lines of each object are presented, with blue color corre-
sponding to lower altitude and red corresponding to higher alti-
tude. The cases of uniform height and volume flooding are ex-

Fig. 4. Adaptation of FMM algorithm.

amined. Considering the synthetic image of Fig. 5(a), and given
the four markers (flooding sources) scenario, one placed on each
component, we expect that after the segmentation the image will
be partitioned in four regions. Since the background is an extra
region, we expect that one object will be eventually merged with
the background region. We investigate the lost-object scenario
for each type of flooding. In the case of height flooding, the ob-
ject of lowest contrast is totally lost. Additionally, the bound-
aries of the remaining objects are not accurately extracted. In
the case of volume flooding, the undetected object is the one
of lowest volume (area and contrast), but the boundaries of the
remaining objects are correctly traced. Similar conclusions are
drawn by observing the results in Fig. 5(g) and (h). Whereas
in Fig. 5(a), the objects of lower contrast and lower volume are
the same, in Fig. 5(e), that is not the case. The presented ex-
periments exploit the basic property of volume flooding i.e., re-
taining the balance between area and contrast, and illustrates its
advantage against height flooding in such cases.

IV. COUPLING GEOMETRY AND TEXTURE IN SEGMENTATION

Up to this point, we have focused on watershed-like seg-
mentation implemented via PDEs. In the cases investigated
above, the characteristic under consideration that controlled the
growing process was image intensity viewed either as seeds’
contrast, size or a combination of these two (volume). However,
most of real word images do not only consist of contrasted areas
but they are also composed of textured parts. Trying to segment
such images based on purely contrast information, captured by
gradient operators, leads to undesirable results, since intensity
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Fig. 5. Height and volume flooding segmentation results. (a), (e): Synthetic
images; (b), (f): contours corresponding to different altitudes (gray values); (c),
(g): height flooding segmentation regions; (d), (h): volume flooding segmenta-
tion regions.

variations in amplitude and phase, owing to textured parts,
introduce false edges that affect the final segmentation result.
Based on evidence from psychophysics, according to which
humans combine multiple cues in order to detect boundaries
from images [43], and in view of the fact that contrast and tex-
ture are two distinct cues baring different type of information,
we try to extract and use them separately so as to improve and
balance the segmentation results.

Based on the PDE of (13), which achieves either volume
or height flooding by exploiting

intensity contrast information, we attempt adding to it an extra
term that will control the image textural information. Ideally we
want the extra term to enable the growing seeds surpass false
edges introduced by texture structures in the image, by speeding
up the evolution at such places. In other words, we want an extra
texture controlled term that will be able to quantify properly the
available image texture information. Now recalling the derived
texture features of Section II-C2, we realize that oper-
ator provides both local and global texture information, tracks
the most dominant texture components along multiple modula-
tion bands and is capable of quantifying important characteris-
tics like geometrical complexity, rate of change in local contrast
variations and texture scale.

As a result, the desired extra term, which bares texture infor-
mation in such a way that favors region growing within textured
parts, is the multiband energy operator of Section II-C2. A way
to incorporate contrast and texture as different cues in a segmen-
tation scheme is by modifying the (13) in the following way:

(16)

where and are parameters that control the contribution of
each cue. Thus, the seed evolution speed depends on two eikonal
terms, linked with some optimality criterion. The first term
drives the curve (seed’s boundary) with speed that maximizes
the flooding of the image toward its watershed. The second term
can be shown to correspond to a flow that maximizes the average
texture energy: .
This term pushes the curve toward regions with large average
texture energy.

Particularly, the segmentation scheme of (16) can be written
in the following generalized form:

(17)

where is used to handle instabilities caused by
gradient’s zero values.

A. Coupled PDE

The previously derived PDE of (16) consists of two com-
ponents: one that controls contrast information using gradient
magnitude operator and another that controls texture informa-
tion by texture modulation energy operator. Although the gra-
dient operator quantifies intensity changes and the energy mod-
ulation operator quantifies AM-FM variations corresponding to
texture, each one’s privilege is eliminated by the application on
the same input image . However, if these two operators could
be applied on separate image transformations emphasizing on
different type of information, the scheme of (16) would be more
efficient and powerful.

The recently proposed image decomposition model [25], [29]
constitutes a solution to the aforementioned problem, thus pro-
viding an effective way of linearly distinguishing contrast an
texture from a single image, in the form . Specifi-
cally, the component, known as cartoon, serves very well as
a contrast descriptor since it consists of relatively flat plateaus
that correspond to object regions, surrounded by abrupt edges
that correspond to object boundaries. The component, which
is in fact the texture oscillation contains texture plus noise infor-
mation and serves as texture descriptor. Combining the
image decomposition philosophy with the PDE of (16) we con-
clude to a coupled segmentation PDE where contrast variations
are taken into account from the part and texture oscillations
are approached through modulation analysis on the compo-
nent

(18)

The latter is a curve evolution with speed inversely proportional
to the intensity contrast (or volume) of the cartoon component
and proportional to the energy of the textured component.
We obtain the cartoon component by applying the leveling
operator [20] on the initial image, and the texture component as
the residual . Treating and processing the two compo-
nents separately and combining them for the image partitioning
part results in a powerful joint segmentation scheme of (18).

It should be noted that geometric curve evolution of the form
has been proposed by Caselles et al.

[44] and Malladi et al. [45]. Our proposed scheme has three
differences from the aforementioned geometric evolution: i) the
first term achieves watershed type flooding, ii) the second term
is a new contribution that acts on the texture component of the
image, and has never been used before in segmentation schemes,
and iii) the curvature component is not present in our scheme
since it was experimentally determined that it does not provide
any significant improvement to the overall segmentation.



372 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 3, MARCH 2008

For the implementation of the proposed curve evolution
scheme, we follow the level set formulation [40], and we
conclude to the level function PDE

(19)

The curves that propagate according to (19) are multiple,
initialized as the contours of a set of markers, thus indicating
significant image regions. The marker extraction is done ac-
cording to the methodologies described in Section II-C. Specif-
ically, depending on the type of image to be segmented we
choose our markers to be contrast oriented, texture oriented, a
combination of the above, or manually placed at areas of in-
terest. It should be clarified here that the proposed segmentation
method including marker extraction is fully automated. How-
ever, marker extraction can be operated with human interven-
tion, according to the needs of each application. The imple-
mentation of (19) has been done with established techniques
from level sets methods. Specifically, the PDE (19) is of pure
eikonal-type and its implementation is based on the FMM [41],
[42], in the way it was described in Section III-C, and ensures
computational speed. Elimination of division-by-zero scenario
as in PDE (17) can be also applied in PDEs (18) and (19) in order
to handle instabilities cause by cartoon gradient zero values. Au-
tomatic and human intervention-based segmetnaion examples
are illustrated in Figs. 6 and 7. In Fig. 6, we demonstrate a set
of the extracted features and segmentation results on a natural
image. The manually placed markers overimposed on the image
are shown in Fig. 6(a). In Fig. 6(b) and (c), we illustrate the

and image components obtained after image decomposi-
tion, and in Fig. 6(d) and (e), we present the (inversed) modula-
tion energies of the image and of the texture compo-
nent . The segmentation result using the PDE of (17)
is shown in Fig. 6(f), whereas the results of using PDE (18) is
shown in Fig. 6(g). In Fig. 6(h), we illustrate the watershed seg-
mentation result for visual comparison. As it can been seen in
Fig. 6(g), which is the case of and coupled segmentation
scheme, region boundaries are better localized and there is no
false contour placement due to texture edges. The incorporation
of and image components in the PDE segmentation scheme
outperforms the results of the other two schemes. Another ap-
plication of a soilsection image segmentation is illustrated in
Fig. 7. Such images demonstrate highly textured and contrasted
areas, and have served as a strong motivation for us in our effort
to introduce and exploit the coupled segmentation scheme.

B. Adaptation of Parameters

So far, we have introduced a PDE-based segmentation
scheme that combines contrast, size and texture criteria. Each
of these cues’ contribution is controlled by a coefficient, namely

contrast/size evolution controlling parameter and texture
evolution controlling parameter. For the computation of these
parameters we can distinguish the following scenarios: i)
and remain spatially constant and ii) and remain
spatially varying. Obviously, the second case seems to be more
efficient due to its ability to adapt depending on local image
characteristics, whereas the first case takes under consideration
global image criteria.

Fig. 6. Image features and segmentation results: (a) original image and
markers; (b) cartoon U ; (c) texture V ; (d) texture modulation energy 	 (I)
(log plot); (e) texture modulation energy 	 (V ) (log plot); (f) coupled
segmentation on I ; (g) coupled segmentation on U+V ; (h) watershed flooding
segmentation on I .

Fig. 7. Image features and segmentation results: (a) soilsection image I ;
(b) cartoon U ; (c) texture V ; (d) texture modulation energy 	 (V );
(e)M (I); (f) markers; (g) segmentation result; (h) segmentation mosaic.

In the case of spatially constant , we assume ,
and we examine a wide range of possible pairs. For each pair,
we compute the corresponding segmentation map and for each
map we compute a quality criterion. The pair that maximizes
(minimizes) the criterion constitutes the optimal choice for pa-
rameters. Obviously, this is a computational demanding method,
and the only reason of using it is as a reference for comparative
studies. In the case of spatially adaptable parameters, we take
advantage of the fact that the already used image de-
composition model gives evidence about the existence of each
component (contrast and texture) at every image location. As
it can be observed in (18), all the needed information about
contrast at each image pixel is encapsulated by com-
ponent. Similarly, all information about texture contribution is
captured by . Hence, we estimate (contrast coeffi-
cient) and (texture coefficient) as the mean square error be-
tween the observed image and the texture or contrast
component, respectively, weighted locally by a small Gaussian
window of scale , i.e.,

(20)

We can either use this estimated -space functions directly
or normalize their sum to 1. Alternatively, the coefficients can
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Fig. 8. Spatially varying �s: (a) mandrill image; (b) cartoon U ; (c) texture V ;
(d) spatial visualization of parameter � ; (e) spatial visualization of parameter
� .

be estimated as: and
. The former selection

of parameters has experimentally been found to yield slightly
better results.

Experimental results have shown that the use of spatially
varying functions improves the overall segmentation result.
In Fig. 8, we present graphically the original image , its
and components and the corresponding spatially varying
functions. The optimum constant pair is and
leading to a segmentation result of total region variance over
equal to 0.025, whereas the spatially varying pair of and
of Fig. 8 produces a segmentation result of total region variance
over equal to 0.023.

V. COMPARISONS AND RESULTS

The performance evaluation of a segmentation algorithm
is an important subject in the study of segmentation, and it
can be done either analytically or empirically [46]. The ana-
lytical methods directly examine and assess the segmentation
algorithms themselves by analyzing their principles and prop-
erties. Empirical methods indirectly judge the segmentation
algorithms by applying them to test images and measuring the
quality of segmentation results, using i) a goodness criterion on
the segmented image without a priori knowledge of the desired
segmentation result and ii) the disparity between the actually
segmented image and an ideally segmented reference one,
known as ground truth (GT). In our case, we are not concerned
with matters of algorithmic complexity nor computational
requirements, but instead, we focus on empirical evaluation
methods.

In order to judge the quality of segmented images produced
by the coupled PDE method, we shall use some quality
measures to quantify our results and test them against results
produced by other methodologies. There is a variety of goodness
measures [46] that have been proposed by many researchers for
the evaluation of segmentation methodologies. Most of them are
established according to human perception and intuition, and
each of them can be used in different segmentation scenarios,
but again there is no global measure that can be applied in every
case. Among them, we have tested several of them and eventu-
ally concluded to following goodness measures.

• Liu–Yang Global Cost Criterion [47], which is a tradeoff
between suppression of heterogeneity and preservation of
details

(21)

where is the total number of regions, is the error over
region defined as the Euclidean distance between the
original image and the mosaic segmented image, and
is the area of the region (in pixels). The smaller the
better the segmentation results.

• Mumford–Shah Criterion: Based on the energy minimiza-
tion functional [26]

, by eliminating the second term
and setting we conclude to the following crite-
rion:

(22)

which corresponds to minimization of the average region
error and region contour length. is the segmented mo-
saic image and is the total segmentation boundary. The
smaller the better segments image .

• Texture-Contrast Locally Weighted Mumford–Shah Cri-
terion: Based on the philosophy of Mumford–Shah
evaluation criterion, and going a step further, we intro-
duced a relatively simple goodness measure that takes into
account both contrast and texture information and can be
viewed as a locally weighted Mumford–Shah criterion.
According to this criterion, we measure the variance in
each region mapped on a cartoon version of the image

, as well as each region’s modulation energy vari-
ance . The lower those variance values,
the better are the segmentation results. The final measure
is a weighted variance obtained as follows. Given the
segmentation of the image domain into disjoint regions

, we introduce a weighted Euclidean
distance metric that compares two discrete images and

over the segmentation partition

(23)

Then, if is either , or any other contrast,
texture transformations of the input image , by the term
weighted variance of the image transform , we
imply the following:

(24)

where is the mean value of in each and
is the corresponding mosaic image.

• Segmentation Boundary Length: The length of the
segmentation boundaries is calculated as the sum of the
perimeters of the regions obtained by the segmentation
method.

The choice of segmentation methods, to which the proposed
scheme will be tested against, is neither easy, nor obvious.
To begin with, the selected methods should produce similar
results with the proposed one, that is they should produce
closed boundaries and disjoint, plane-filling regions. Ideally,
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Fig. 9. Reference images and marker sets for comparisons of different
watershed-like segmentation methods: (a) soilsection image; (b) aerial image;
(c) biomedical image from prostate tissue; (d) mandrill image; (e) marker set;
(f) marker set; (g) marker set; (h) marker set.

the number of regions in the two schemes should be the same.
We concluded to the selection of the following methodologies:
watershed segmentation based on height and volume flooding
as well as the multicue scheme without image decomposition
of (17). In Fig. 10, we provide a set of different segmentation
results obtained by applying the aforementioned methods on
four different reference images shown in Fig. 9(a)–(d). The
selected images are: 1) a soilsection image consisting of highly
contrasted and textured areas, 2) an aerial photo, 3) a biomed-
ical image of prostate tissue, and 4) an animal image with
differently textured areas. The different segmentation method-
ologies are tested using the same set of automatically extracted
markers via contrast or volume criteria for images Fig. 9(a)–(c),
and a set of manually placed markers for image shown in
Fig. 9(d). The corresponding marker sets are illustrated in
Fig. 9(e)–(h). Fig. 10(a) illustrates the results of the multicue
segmentation scheme without decomposition of (17) applied
on each image. Fig. 10(b) demonstrates segmentation results
of the proposed multicue scheme with decomposition of (18),
whereas Fig. 10(c) and (d) demonstrates segmentation results
of height and volume watershed flooding. Apart from visual
comparisons, we provide Table I, where the evaluation criteria
of (21), (22), (24), and are computed for each case. As
it can be observed in Table I, the proposed multicue coupled
scheme with image decomposition performs better than
the other methodologies, with respect to computed values of the
evaluation criteria. In the case of mandrill image of Fig. 9(d)
and the application of Liu–Yang global cost criterion, the per-
formance of watershed volume flooding is better than the one of
coupled scheme. This is justified since Liu–Yang global
cost criterion is a tradeoff between suppression of heterogeneity
and preservation of details, and, hence, it matches better the
balanced contrast-area results of volume watershed flooding
applied on highly textured images such as the mandrill image.
Cases like the above served as rationale for the introduction of
the balanced criterion of (24), which incorporates contrast and
texture in the evaluation of the segmentation results.

Concluding, we should stress the fact that based on various
quantitative results with emphasis on the improved criterion
of (24), the proposed multicue coupled scheme with image

Fig. 10. Comparisons of different types of watershed-like segmentation results:
(a) multicue segmentation results without decomposition; (b) multicue segmen-
tation results with decomposition; (c) height watershed flooding segmentation
results; (d) volume watershed flooding segmentation results.

TABLE I
EVALUATION COMPARISONS

decomposition outperforms the other segmentation methodolo-
gies. It provides better results, in the sense that the resulting
partitioning map consists of more uniform regions (low cartoon
variance values) with smoother texture (low modulation energy
variance), compared to the other methodologies.

Regarding empirical discrepancy methods, we have applied
our segmentation methodology on images from the Berkeley
segmentation database and used the available reference images
for evaluation. All available images originate from real wold
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Fig. 11. Comparisons of coupled PDE segmentation results against Berkeley’s
database GT data. (a) GT segmentation; (b) coupled scheme segmentation re-
sult; (c) GT regions;(d) coupled scheme regions.

scenes and the corresponding GT data are a result of manual
segmentation by human subjects, which implies that the GT data
are subjective to a certain degree of ambiguity. As a measure of
distance between the segmented and the GT reference image we
have used a region-based consistency measure, the bidirectional
consistency error (BCE) [48]. Markers are placed manually in-
side each region of interest. In Fig. 11, we exhibit the segmenta-
tion results of our coupled proposed methodology as well as an
indicate GT image obtained by human segmentation. The BCE
is obtained by comparing our segmentation result to all available
GT data (not only the one illustrated here) and taking the average
value among them. For the image in the first row of Fig. 11,
the BCE is 0.061, interpreted as the mean square error between
our segmentation result and the average human segmentation,
in terms of region map distance. The above BCE value is very
satisfactory, regarding the fact that human segmentations do not
bear any accuracy in pixel level. For the image in second row of
Fig. 11, the obtained BCE is 0.21 which is quite good, regarding
the complicated structure of the image as well as the simplified
human segmentation result.

VI. CONCLUDING REMARKS

This paper addressed the problem of image segmentation as a
set of subtasks, with emphasis on the image partitioning stage,
viewed as a generalized flooding procedure incorporating dif-
ferent information cues. Specifically, the stages of image sim-
plification, decomposition into constituent parts and feature ex-
traction were investigated, and connected operators of different
types were proposed as the desirable tools for image presegmen-
tation processing. The classic paradigm of watershed transform
was modeled and extended via PDEs using ideas from curve
evolution and level sets, in order to satisfy volume flooding
criteria. Additionally, using ideas like image decom-
position and texture AM-FM modeling, geometrical and tex-
tural information were coupled in a novel region growing wa-
tershed segmentation scheme. The proposed extended scheme
was evaluated in terms of results’ quality and was compared to
other watershed-like segmentation methods. The obtained qual-
itative and comparative results verified the fact that the coupling
of structural and textural information via decomposition, em-
bedded in a generalized flooding segmentation procedure and
modeled via PDEs, leads to high quality results, and improves
the classical watershed flooding paradigm. Finally, we note that
additional visual cues, such as color, could be added as forces

in our proposed PDE-based coupled segmentation scheme; this
is part of our ongoing work in this area.
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