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Abstract. This paper develops a multiscale connectivity theory for shapes based on the axiomatic definition
of new generalized connectivity measures, which are obtained using morphology-based nonlinear scale-space
operators. The concept of connectivity-tree for hierarchical image representation is introduced and used to define
generalized connected morphological operators. This theoretical framework is then applied to establish a class
of generalized granulometries, implemented at a particular problem concerning soilsection image analysis and
evaluation of morphological properties such as size distributions. Comparative results demonstrate the power and
versatility of the proposed methodology with respect to the application of typical connected operators (such as
reconstruction openings). This multiscale connectivity analysis framework aims at a more reliable evaluation of
shape/size information within complex images, with particular applications to generalized granulometries, connected
operators, and segmentation.
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1. Introduction

In many image analysis problems, such as segmen-
tation, a very important task is to extract particu-
lar regions of an image while preserving as much of
the contour information as possible. Classical mor-
phological operators perform local transformations,
using one or more structuring elements, and may
thus significantly modify boundaries within an im-
age. Connected morphological operators are essen-
tially different, since they act on the flat zone level
[4], thus having the capacity to precisely identify
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and extract whole connected components in an im-
age, which are treated as a whole without alter-
ation of their boundaries. This very important prop-
erty makes connected operators very attractive for
many image processing and filtering tasks, especially
when precise shape analysis is concerned. Typical
connected operators are the reconstruction and area
openings for binary or grayscale images [18]. In this
paper, we develop a multiscale connectivity theory
for shapes, obtained using morphology-based non-
linear scale-space operators. This theoretical frame-
work and the resulting generalized connected operators
aim at a more reliable evaluation of shape/size
information within complex images, with particu-
lar applications to generalized granulometries and
segmentation.

Multiscale shape analysis has been an active research
area in computer vision. Some well-known approaches
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include: the curvature Gaussian scale-space; the
dynamic shape [6] obtained by thresholded Gaussian
convolutions of the shape’s binary indication func-
tion; and the reaction-diffusion scale-space [5] ob-
tained via differential curve evolution and governed
by Hamilton-Jacobi PDEs. Our approach to multiscale
shape analysis in this paper is algebraic and based
on lattice-theoretic formulations of connectivity and
morphology.

The classical notion of connectivity is defined in
the framework of topological spaces, as well as in
graphs. Serra [14] has given a formal definition of
connectivity class (or connection) in a complete lattice
framework. Based on this definition and the equivalent
concept of connected openings, several second-order
(or second-generation) connections have been defined
[15], usually based on some extensive morphological
operator, like closing or extensive dilation. These are
often called clustering connectivities, which in fact
identify as connected, components that are “close
enough” to each other. Numerous applications exist in
the literature for this connectivity framework (includ-
ing segmentation, motion compensation etc. [12]),
as well as theoretical extensions like the set-oriented
approach introduced in [11].

In this paper we modify this concept to cover a dif-
ferent class of second-order connections which, based
on multiscale antiextensive morphological operators
such as openings or antiextensive erosions, aims at
differentiating between “strong” or “loose” connec-
tions in a set. That is, starting from a connectiv-
ity class C, a set is treated as connected at a given
scale if the application of an antiextensive operator
at this scale yields a new set that also belongs to C.
A multiscale connectivity analysis framework is pro-
posed based on the axiomatic definition of general-
ized connectivity measures that quantify the notion of
a varying “degree” of connectivity of a set, like for
instance a multiscale connectivity function defined us-
ing morphological adjunctions (erosion, dilation op-
erators). The concept of connectivity-tree (C-tree) is
introduced and an algorithm for its creation is de-
scribed, which constitutes the core of the multiscale
connectivity analysis. This hierarchical image repre-
sentation corresponds, in fact, to a recursive partition-
ing of the image into progressively “stronger” con-
nected components at each connectivity level, and can
be used to define new generalized connected oper-
ators based on a decision criterion, which may for
instance employ a thresholding connectivity profile

chosen appropriately for a particular image analysis
application.

The motivation for this generalized hierarchical
connectivity framework resides on a well-known
drawback related to the application of typical con-
nected operators (such as reconstruction or area
openings), which is often called “leakage” problem
resulting in the creation of undesirable connections
in an image due to the presence of thin connect-
ing paths between large image components. One
of the goals of the proposed multiscale connectiv-
ity framework is to control the effect of this prob-
lem by taking into account additional geometrical
information related to the presence of “compound”
shapes/structures and their interconnections within an
image.

The generalized connectivity operators, defined
based on the C-tree image representation, are used
to establish new generalized granulometries to per-
form multiscale image analysis and evaluate morpho-
logical properties such as size distributions within
an image. Granulometries constitute one of the most
useful and versatile tools of morphological image
analysis [8], with a wide range of applications de-
scribed in the literature, including texture characteri-
zation [16], image segmentation etc., both for binary
and grayscale images [19]. A particular application
is considered in this paper that concerns granulomet-
ric analysis of soilsection images. Evaluation of soil
structure is primarily concerned with detecting com-
pound soil formations, differentiating them from void
space and estimating pertinent morphological proper-
ties such as size/shape distributions. Extraction of such
morphological features from complex sample soilsec-
tion images is a very demanding task. The bound-
aries preservation property of connected operators can
be very useful in such situations where all homoge-
neous regions in an image have to be reliably and pre-
cisely identified. The granulometric analysis results
obtained using typical connected operators are com-
pared to the ones resulting from the application of
the generalized connectivity operators introduced in
this paper, demonstrating the power and the versatil-
ity of the proposed multiscale connectivity analysis
framework.

Summarizing, this paper focuses on:

(a) the definition of new generalized connectivity mea-
sures, based on morphological lattice operators
(Section 2),
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(b) the introduction of a hierarchical, multiscale, con-
nectivity analysis framework, based on the con-
cept of connectivity-tree (C-tree) (Section 3). An
algorithmic implementation for C-tree creation is
also described in Section 3.2.

(c) the application of this hierarchical image repre-
sentation for the definition of new generalized
connectivity operators, which could prove more
appropriate for a number of applications, like
the development of generalized granulometries
for reliable and precise evaluation of morpho-
logical properties such as size/shape distributions
(Section 4),

(d) the implementation of this theoretical framework
in a particular image analysis problem concerning
multiscale granulometric analysis and evaluation
of soilsection images (Section 4.4), demonstrating
the ability of the proposed generalized operators
to extract more reliable and accurate information
about the shape/size structure within an
image.

2. Generalized Morphological
Connectivity Measures

2.1. Introduction to Lattice Operators

In this section we recall some basic theoretical
elements of lattice-based mathematical morphol-
ogy that are used throughout this paper. For a
more comprehensive discussion the reader may refer
to [3].

We focus on the set of shapes (or binary images)
that can be modelled by the power set P(E) (i.e. the
collection of all subsets of E), where E = R

n or Z
n

(in this paper we use mainly n = 2, but the concepts
generally hold for n ≥ 2). We view P(E), equipped
with the partial order of ⊆, as a complete lattice with
supremum the union

⋃
of sets and infimum the inter-

section
⋂

. Shape transformations can be then viewed
as lattice operators onP(E). More important are the in-
creasing operators ψ that satisfy: X ⊆ Y ⇒ ψ(X ) ⊆
ψ(Y ).

Four very useful increasing lattice operators are:
the dilation, which distributes over

⋃
, the erosion,

which distributes over
⋂

, the opening, which is in-
creasing, antiextensive (ψ(X ) ⊆ X ) and idempotent
(ψ2(X ) = ψ(X )), and the closing, which is increasing,
extensive and idempotent. Classical examples of such
operators on P(E) are the Minkowski dilation δB and

erosion εB , defined as follows:

δB(X ) = X ⊕ B and εB(X ) = X � B

where ⊕ and � are the Minkowski addition and
subtraction respectively, and B is a compact convex
structuring element, such as the closed unit ball. The
Minkowski opening and closing filters onP(E) are also
defined as:

γB(X ) = X ◦ B = δB(εB(X )) = (X � B) ⊕ B

βB(X ) = X • B = εB(δB(X )) = (X ⊕ B) � B

Multiscale operators can then be defined by replacing
B with a multiscale version r B = {rb : b ∈ B} (r ≥ 0).
Examples include the multiscale dilation δr

B and
erosion εr

B : for X, B ⊆ R
n ,

δr
B(X ) = X ⊕ rB, εr

B(X ) = X � rB (1)

For discrete shapes X, B ⊆ Z
n , we define the multi-

scale dilation and erosion recursively:

δr
B(X ) = δB

(
δr−1

B (X )
)
, εr

B(X ) = εB
(
εr−1

B (X )
)

(2)

where r = 1, 2, . . . , and δ0
B(X ) = ε0

B(X ) = X . Note that
the two above definitions of multiscale dilation/erosion
coincide in R

n if B is convex and r is an integer.

2.2. The Concept of Connectivity: Basic Definitions

In this section we describe the general concept of con-
nectivity and present the basic definitions, as well as
the notation and formalism used throughout this pa-
per. According to the classical definition of connec-
tivity, a subset X of a topological space is said to be
connected when it cannot be partitioned into two non-
empty closed (or open) sets. In an Euclidean topolog-
ical space the concept of arcwise (path-) connectivity
can also be defined, which proves to be more conve-
nient. According to this definition, a set X is said to be
connected if, for every a, b ∈ X , there exists a contin-
uous mapping ψ from [0, 1] into X such that ψ(0) = a
and ψ(1) = b (i.e. a path from a to b, belonging com-
pletely into X ). In the sequel, C denotes the usual topo-
logical path-connectivity inP(E), which for digital im-
age analysis problems resides on the 4- or 8-adjacency
principle introducing elementary connections between
neighboring pixels.
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A basic result that follows from the classical defini-
tion of connectivity is that the union of two intersecting
connected sets is also connected. This result has been
used by Serra as a starting point to propose a different
definition for connectivity [15].

Definition 1 (Connectivity class). A subsetC ⊆ P(E)
is called a connectivity class if the following properties
hold:

(i) ∅ ∈ C and {x} ∈ C for every x ∈ E
(ii) if X ⊆ C and

⋂X �= ∅, then
⋃X ∈ C

As shown in [14], the definition of a connectivity
class is equivalent to the definition of a family of open-
ings {γx , x ∈ E}, called connectivity openings, satis-
fying the following conditions:

(i) ∀x ∈ E, γx ({x}) = {x}
(ii) ∀x, y ∈ E and X ⊆ E, γx (X ) and γy(X ) are

either equal or disjoint
(iii) ∀x ∈ E and X ⊆ E, x /∈ X ⇒ γx (X ) = ∅

Intuitively, γx (A) extracts the connected component of
A containing element x , that is:

γx (A) =
⋃

{B ∈ C : x ∈ B and B ⊆ A} (3)

The concept of connectivity can be extended using a
variety of lattice operators. Let ψ be an increasing and
extensive operator on the lattice P(E). Then, it can be
shown that a new connectivity class is obtained based
on the following definition of connectivity openings:

γ ψ
x (A) =

{
γx (ψ(A)) ∩ A, if x ∈ A

∅, if x /∈ A
(4)

This is often called second-order (or clustering) con-
nection since, starting from C, a new connectivity class
is created, where two components are considered as
connected when being “close enough” to each other,
in the sense that the application of the extensive op-
erator ψ yields a single connected component belong-
ing to C. Typical example of second-order connectivi-
ties use dilation and closing operators [15]. Based on
the above concept of clustering connectivity, Braga-
Neto and Goutsias in [1, 2] proposed the definition of a
multiresolution connectivity measure as a non-negative
function on the lattice of interest that quantifies the idea
of a varying degree of connectivity.

Definition 2 (Connectivity measure [1]). A function
µ : P(E) → R+ is defined as a connectivity measure1

on P(E) if:

(i) µ(0) = µ(x) = sup{µ(A) : A ∈ P(E)}, for x ∈ E
(ii) µ(

⋃
Ai ) ≥ inf{µ(Ai )}, ∀Ai ∈ P(E) :

⋂
Ai �= 0

This definition implies that the union of some arbi-
trary intersecting sets is considered at least “as much
connected” as any of the individual subsets (i.e. it has
a connectivity measure at least equal or greater than
any of the individual subsets). Families of multiresolu-
tion connectivity classes (more particularly, connectiv-
ity pyramids) can then be defined using such a measure
of the connectivity of a set A ∈ P(E).

A special case of connectivity measure has been
introduced in [1] using morphological dilation opera-
tors. This dilation-based connectivity measure has been
defined as:

µδ(A) = m − inf
{

r ∈ [0, m] : δr
B(A) = A ⊕ rB ∈ C

}
(5)

where m is an arbitrary positive real defining the maxi-
mum acceptable measure of connectivity (i.e. the max-
imum acceptable scale for dilations). This measure
µδ(A) quantifies in fact the notion of “how close” are
the disconnected components of a set A, as interpreted
by the number of dilations needed before A becomes
connected according to the usual definition of connec-
tivity in an Euclidean topology.

However, what is needed in many image analy-
sis problems (such as segmentation) is the inverse
of the above, that is, to extract “strongly connected”
(as opposed to “loosely connected”) regions from an
initially topologically connected set. The application
of typical connected operators, such as the recon-
struction openings/closings, leads to finding all con-
nected regions of an image irrespective of the geom-
etry of the path “tying together” these regions (that
is, even if this path is “thin” and/or “long”). This
is known as “leakage” problem, resulting in the cre-
ation of undesirable connections between large objects
in an image due to the existence of thin connected
paths between them (for instance, see [12]). To cover
such situations, some new quantitative connectivity
measures are introduced in the sequel, which will
then support a multiscale hierarchical connectivity
analysis.
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2.3. Generalization of Connectivity Measures

In various image analysis problems we may be con-
fronted with situations where the connected compo-
nents of an image, containing a marker, have to be
identified in order to evaluate some related morpholog-
ical features. This is, for instance, the case when com-
puting size distributions using reconstruction-based
granulometries (as will be discussed in Section 4).
In practice, however, such typical connected opera-
tors are known to present the drawback of recon-
structing “too much”, creating inappropriate connec-
tions in an image, between objects that should be
intuitively considered as disjoint. This may be par-
ticularly undesirable in many situations where such
loosely connected image components may need to be
treated separately and differentiated from strongly con-
nected ones. In such cases, the “degree of connec-
tivity” has to be quantified, taking into account this
form of additional geometrical information. In this
paragraph, we propose the definition of generalized
connectivity measures as a means to differentiate be-
tween strong or loose connections within an image
and control the effect of the so-called “leakage” prob-
lem, resulting from the application of typical connected
operators.

We illustrate this concept by an example, which will
be used in the sequel as a means to validate the cor-
rectness of our approach in terms of defining appropri-
ate connectivity measures. Let’s consider, for instance,
the three different sets A1, A2, A3 ⊆ R

2, shown in
Fig. 1. Each one of these sets is initially topologi-

Figure 1. Generalized connectivity measure for three different sets: µ(A1) > µ(A2) > µ(A3).

cally connected according to the pathwise definition
of connectivity. What we need to define is a mea-
sure of the connectivity µ :P(E) → [0, 1] such that
µ(A1) > µ(A2) > µ(A3). In fact, µ(.) could be a non-
negative function taking values µ(A) → 0 when A
is considered “nearly disconnected”, and µ(A) → 1
when A is considered “completely connected”. We
could thus define a generalized connectivity measure
on P(E) as follows:

Definition 3 (Generalized Connectivity Measure). A
function µ : P(E) → [0, 1] constitutes a generalized
connectivity measure on P(E) if:

(i) µ(∅) = 0 and
(ii) µ(

⋃
Ai ) ≥ inf{µ(Ai ), µ(

⋂
Ai ), µ(Ai\

⋂
Ai )},

∀Ai ∈ P(E)

The modification of condition (ii) above, with respect
to Definition 2, states that the union of two sets can-
not be “less connected” than the “least connected” ele-
ment of the sets themselves and their intersection. The
concept of generalized connectivity class can then be
equivalently defined by strengthening condition (ii) of
Definition 1, and introducing a more strict criterion to
ensure that the union of some connected intersecting
sets yields a new set that is itself “connected”. Our goal
is to extend Definition 1 to cover classes of “strongly
connected” sets, i.e. sets that cannot be “easily” parti-
tioned into disjoint components, for instance under the
recursive application of an antiextensive morphologi-
cal operator.
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Definition 4 (Generalized Connectivity Class). A
subset K ⊆ P(E) is called a generalized connectiv-
ity class if the following property holds:

Xi ∈ K, ∀i ∈ I and

{ ⋂
i∈I

Xi , Xi\
⋂
i∈I

Xi

}
∈ K \ ∅

⇒
⋃
i∈I

Xi ∈ K

where I is an arbitrary index set.

The above condition states in fact that the union of two
intersecting connected sets (X1, X2) remains itself con-
nected if the intersection X1 ∩ X2 is “strong” enough to
“adequately connect” the two sets. We can then asso-
ciate a pyramid of generalized connectivity classes Kµ

with every connectivity measure µ. For every c ∈ [0, 1]
we can define a generalized connectivity class:

Kc
µ = {X ∈ P(E) : µ(X ) ≥ c} (6)

In other words,Kc
µ contains all sets X that have a gener-

alized connectivity measure µ(X ) greater than or equal
to c. This means that:

∀c1, c2 ∈ [0, 1], c1 ≤ c2 ⇒ Kc2
µ ⊆ Kc1

µ .

The above definitions provide a unified theoretical
framework enabling us to incorporate not only clus-
tering connectivities (such as the dilation-based con-
nectivity mentioned above) but also the inverse, that
is, “partitioning connectivities” (like the erosion-based
connectivity that will be discussed in the following
paragraph), which can then form the basis for a mul-
tiscale connectivity analysis and support the definition
of generalized connected operators.

2.4. Connectivity Measures Based
on Morphological Operators

Let’s start considering now some particular cases of
generalized connectivity measures having the capac-
ity to distinguish between the sets illustrated in Fig. 1.
To differentiate between sets A1 and A2 we can define
a connectivity measure based on some antiextensive
morphological operator, like an antiextensive erosion
εB or opening γB . Such a connectivity measure µε (or
µγ ) would indicate in fact “how fast” a set A ∈ C be-
comes disconnected after the recursive application of
an antiextensive operator. In the rest of the paper, we

use some form of exponential function to define mor-
phological connectivity measures. We can thus define
an erosion-based connectivity measure as follows.

Definition 5 (Erosion-based Connectivity Measure).
Let εr

B(X ) = X � rB denote a multiscale erosion on
P(E), with B being a compact convex structuring ele-
ment. A function µε : P(E) → [0, 1] defined as:

µε(X ) = 1 − e−λ rε(X ) with

rε(X ) = inf
{
r ≥ 0 : εr

B(X ) /∈ C \ ∅}
(7)

is called erosion-based connectivity measure, where
λ > 0 is a parameter that determines the rate of the
exponential function.

According to this definition, when rε(X ) (which we
call erosion-based connectivity degree) equals zero,
meaning that the set X is already disconnected, then
µε(X ) = 0, while for compact sets X with rε(X ) tak-
ing large values we get µε(X ) → 1.

In other words, the erosion-based connectivity mea-
sure indicates “how fast” a set becomes disconnected
(or vanishes) under the recursive application of an ero-
sion operator, thus corresponding to the width of the
“narrowest” path between the major connected com-
ponents of an image. In fact, this definition leads to
a class of “second-order” (partitioning) connections.
This means that, starting from a given connectivity
class C, a new erosion-based generalized connectivity
class is created, where a set is considered as connected
if it cannot be “easily partitioned” into two (or more)
non-empty components through the application of an
antiextensive morphological—erosion—operator. This
concept is similar to the one underlying the definition
of the dilation-based second-order clustering connec-
tions, which identify as connected the components that
are “close enough” to each other, in the sense that
they can be “easily clustered” together through the
application of an extensive morphological—dilation—
operator. Applying now Definition 5 for the two sets
A1 and A2 of Fig. 1, we get:

µε(A1) = 1 − e−λr2 and µε(A2) = 1 − e−λr1 ,

and since r1 < r2 ⇒ µε(A1) > µε(A2).

The erosion-based connectivity, as defined above,
does not distinguish though between the two sets A2

and A3 of Fig. 1. For these sets we have: rε(A2) =
rε(A3) = r1 and hence µε(A2) = µε(A3). Therefore, a
different kind of connectivity measure must be defined
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to cover such situations. Such a measure must take into
account, not only the “width” but also the “length” of
the narrowest path within a topologically connected
set. One could think, for instance, of employing some
form of dilation-based connectivity measure, such as
the one mentioned in Section 2.2. However, this mea-
sure should be here extended using conditional dilation
operators, in order to take into account connectivity in-
formation (path geometry etc.) contained in the original
set. One way of doing this is to recursively apply some
form of anti-extensive morphological operator, until
the set becomes disconnected (as it has already been
performed in Definition 5), and subsequently use some
form of extensive operator (e.g. conditional dilations,
with the original set as a mask) until the set becomes
once again connected.

This consecutive application of one anti-extensive
morphological operator followed by an extensive one,
in order to quantify some sort of connectivity prop-
erties, could lead to the definition of a connectiv-
ity measure based on adjunctions. Let for instance
α = (εB, δB) denote an adjunction on P(E). Then we
could define an adjunctional connectivity measure as a
function µα : P(E) → [0, 1] such that:

µα(X ) = e−λ rα (X ) (8)

with

rα(X ) = inf
{
r ∈ N : δr

B

(
ε

rε(X )
B (X )

∣∣ X
) ∈ C

}
where rε refers to the erosion-based connectivity de-
gree of X (Definition 5), and δB(X | Y ) denotes the
conditional dilation of set X using Y as a mask:

δr
B(X | Y ) = δB

(
δr−1

B (X | Y ) | Y
)

and

δB(X | Y ) = (X ⊕ B) ∩ Y (9)

We then get for the example-sets of Fig. 1:

rα(A2) < rα(A3) ⇒ µα(A2) > µα(A3)

However, rε(A1) = r2 > r1 = rε(A2), and thus:
rα(A1) = r2 + (h/2) > r1 + (h/2) = rα(A2), which
leads to an undesirable result: µα(A1) < µα(A2).

In other words, applying the connectivity measures
defined above in the case of the example illustrated in
Fig. 1, we conclude that the erosion-based connectiv-
ity measure succeeds in differentiating only between
sets A1 and A2, while the adjunctional connectivity
measure is successful only for sets of the form A2 and

A3 failing to correctly discern sets A1 and A2. In or-
der to cover all these situations successfully based on
a single morphological connectivity measure, a multi-
scale connectivity function is introduced in the follow-
ing paragraph, extending the definition of adjunctional
connectivity measure. An average adjunctional con-
nectivity measure can then be defined that leads to the
desired results, as will be illustrated using the example
sets of Fig. 1.

2.5. Multiscale Connectivity Function

We now extend the morphological connectivity mea-
sures introduced in the previous paragraph and define
a multiscale connectivity function as follows:

Definition 6 (Adjunctional Multi-Scale Connectivity
Function). Let α = (εB, δB) denote an adjunction
on P(E). A function µα :P(E)×R+ → [0, 1] defined
as:

µα(X, s) = e−λ rα (X,s) with

rα(X, s) = inf
{
r ∈ N : δr

B

(
εs

B(X ) | X
) ∈ C\∅}

(10)

is called adjunctional connectivity function and gives
a measure of the connectivity of a set X at scale s.

Applying this definition for the sets A1, A2, A3

of Fig. 1 we obtain the three connectivity profiles
shown in Fig. 2, where we have taken λ = 0.05 and
r1 = 4, r2 = 10, R1 = 20, R2 = 25, h = 25 (in arbitrary
length units), while a unit disk has been used as structur-
ing element for the morphological operators. We may
note here that:

µα(Ai , s) = 1, for all scales s:

0 < s < r1 and R1 < s < R2

rε(A1) = r2 > r1 = rε(A2) = rε(A3)

(the connectivity function equals 1, for large scales
s: R1 < s < R2 where there is only one connected
component left in the image, while the rest of it has
vanished under the application of εs).

For the sets A1 and A2 we have:

µα(A1, s) = 1 > µα(A2, s), ∀s : r1 < s < r2 and

µα(A1, s) = µα(A2, s), ∀s : r2 < s < R1
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Figure 2. Adjunctional connectivity functions for the three sets A1, A2, A3 of Fig. 1. (a) µα(A1, s); (b) µα(A2, s); and (c) µα(A3, s).

For the sets A2 and A3 we also have:

rα(A2, s) < rα(A3, s) ⇒ µα(A2, s) > µα(A3, s),

∀s : r1 < s < R1

Thus, for all scales s > 0 we have:

µ(A1, s) ≥ µ(A2, s) ≥ µ(A3, s)

which means that for the integrals
∫

µα(Ai , s) ds, rep-
resented by the shaded regions in Fig. 2, we have:∫

s
µα(A1, s) ds >

∫
s
µα(A2, s) ds >

∫
s
µα(A3, s) ds

This observation leads to the definition of a new average
connectivity measure, as follows.

Definition 7 (Average Adjunctional Connectivity
Measure). Let α = (εB, δB) denote an adjunction
on P(E) and µα :P(E) × R+ → [0, 1] an adjunc-
tional multi-scale connectivity function. We call av-
erage adjunctional connectivity measure the function
µ̄α(.) :P(E) → [0, 1] defined as:

µ̄α(X ) =
∫ smax

s=0 µα(X, s) ds

smax
(11)

where smax is a normalizing factor indicating the maxi-
mum applicable scale (for erosions), and can be defined
as:

smax ∈ R+ : εs
B(X ) = ∅, ∀ s > smax, X ∈ P(E).

The connectivity function, as defined above, con-
tains useful geometrical information related to the con-
nectivity structure (shape/size) of a set at multiple

scales. The connectivity profile of a set incorporates
important morphological cues, interpreting how “eas-
ily” the set becomes partitioned into disjoint compo-
nents and providing a measure of the “distance” be-
tween these principal connected components. In the
sequel, the adjunctional connectivity function and its
algorithmic computation form the basis of a multiscale
connectivity analysis framework. The concept of con-
nectivity tree is introduced and an algorithm for its cre-
ation is presented, leading to a hierarchical partitioning
of a set into connected components with progressively
increasing average connectivity measure.

3. Multiscale Hierarchical Connectivity Analysis

3.1. The Connectivity Tree

In this section, the concept of multiscale connectiv-
ity function, together with the generalized morpho-
logical connectivity measures introduced above, are
used to establish the theoretical framework for a hi-
erarchical connectivity image analysis. The basic idea
lies on the following observation: it is well known
that a binary image (i.e. a set X ⊆ R

2, which can
in fact correspond to the thresholding of a grayscale
image at a particular gray-level) can be decomposed
into a collection of disjoint connected components
{Xi ⊆ X : Xi ∈ C,

⋂
Xi = ∅ and

⋃
Xi = X}, which

constitutes a partition of X [13]. For each one of these
components, a multiscale connectivity function can be
computed providing useful geometrical cues related to
its “connectivity structure”, as explained in the previous
section. Based on this information, each component Xi

can be further partitioned into a set of new connected
components {Y i

j : j ∈ Ji } such that:
⋃

j Y i
j = Xi and
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Figure 3. Connectivity Tree (C-Tree) decomposition for an example binary image-set.

µ(Y i
j ) ≥ µ(Xi ), ∀ j ∈ Ji (where Ji is an appropriate

index set). In other words, each Y i
j deriving from Xi , is

more strongly connected than its predecessor Xi . This
hierarchical decomposition into progressively stronger
connected components leads in fact to the creation of
a tree representation of the initial binary image, where
at each level k:

{
Xk

i

}
i=1,...,nk

�→ {
X (k+1)

j

}
j=1,...,nk+1

with Xk
i denoting the i th node at level k, and nk the

total number of nodes at this level. This representation
is called Connectivity-Tree (or C-Tree).

The concept of connectivity tree can be better ex-
plained by an example, illustrated in Fig. 3. At level
1 the C-tree contains the initial decomposition of the
original image X into connected components (that is,
only one component for the example set of Fig. 3). At
each level k, the C-tree contains nodes {(k, i)}i=1,...,nk

(nk = 2, for all C-tree levels of Fig. 3), corresponding
to the set of connected sub-components {Xk

i }i=1,...,nk

of X . Each node is recursively partitioned into a set
of new connected components, with progressively in-
creasing generalized connectivity measure. As will be
explained in the following paragraph (describing an
algorithm for the creation of C-trees), this is accom-
plished through the recursive application of an antiex-

tensive morphological operator, such as erosion εs
B(·)

with progressively increasing scale s, following a pro-
cedure similar to the one used in the previous section
to compute adjunctional multiscale connectivity func-
tions. The leaf-nodes of the C-tree representation then
contain binary image components that cannot be further
partitioned, that is, vanish completely after the recur-
sive application of such an antiextensive morphological
operator.

This hierarchical image representation enables the
definition of new generalized connected operators,
like for instance, modified connected openings, which
treat as connected image components Xk

i that ei-
ther correspond to leaf-nodes or satisfy the criterion:
µ(Xk

i ) ≥ θ , where θ is a given thresholding connec-
tivity measure. We can thus define extensions of typi-
cal connected operators, such as reconstruction or area
openings/closings, where any of the generalized con-
nectivity measures µ introduced above can be used to
define different criteria. When the adjunctional multi-
scale connectivity function of Definition 6 is used, this
criterion becomes:

µ
(
Xk

i , s
) ≥ θ (s), ∀s ≥ 0 (12)

where θ : R+ → [0, 1] in this case defines a threshold-
ing multiscale connectivity profile. In the following
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paragraph, we present an algorithm for the creation
of C-tree structure, integrating the computation
of multiscale connectivity function for each tree-
node.

3.2. Algorithmic Implementation

The objective of this section is to describe an algo-
rithmic implementation for the creation of connectiv-
ity trees (C-tree creation). This implementation relies
mainly on two basic procedures:

(a) A procedure that finds and labels the connected
components of a binary image-set (using 4- or 8-
connectivity).

Function: find-connected-components(·)
Input: binary image X ,
Output: a partition of X consisting of a set

{Y j } j=1,...,nc of connected and disjoint
marked components, that is: Y j ∈ C,⋂

Y j = ∅ and
⋃

Y j = X .

(b) A conditional wavefront expansion algorithm
that, given a binary image-set X (mask) and
a set {Y j } j=1,...,nc (acting as a marker) of con-
nected (and disjoint) marked image components,
reconstructs the original image X by concur-
rently expanding the boundaries of all Y j , thus
resulting in a new partition {Z j } of X . For
each pixel belonging to the current boundary
of Y j , its neighbors inside X are found and
marked as belonging to the corresponding re-
constructed set Z j (if yet unmarked). This pro-
cedure repeats itself recursively, and terminates
when all the pixels of the original image X are
visited.

Function: wavefront-expansion(·)
Inputs: {Y j } j=1,...,nc : Y j ∈ C,

⋂
Y j = ∅ and⋃

Y j ⊆ X and binary image X (mask),
Output: a partition of X , that is:

a set {Z j } j=1,...,nc of connected and
disjoint components, such that: Z j ∈ C,
Y j ⊆ Z j ,

⋂
Z j = ∅ and

⋃
Z j = X .

The basic element that needs to be specified for the
algorithmic implementation of the C-tree creation is
the data-structure of each node (C-node) and the infor-
mation it should contain. The fields used to represent

the C-node structure corresponding to the connected
image component Xk

j , are described hereafter.

C-node structure (corresponding to connected
component Xk

j ):

c-level: C-node level k within the C-tree
structure

c-index: integer j uniquely identifying the
C-node within level k

Image: contains the binary image
component Xk

j

size: maximum scale smax : ∀s > smax,
εs

B(Xk
j ) = ∅

area: Area(Xk
j )

c-function[.]: multiscale adjunctional
connectivity function µα(Xk

j , s),
0 < s < smax

num-of-children: the number of children C-nodes
in the hierarchical C-tree structure
(0, if C-node (k, j) is a leaf-node)

child[.]: pointers to the children C-node
structures

The algorithm for C-tree creation then resides on
a recursive procedure (called create-C-tree(...)) that
takes as input a C-node structure, constructs the chil-
dren C-nodes and recursively calls itself creating the
lower part of the C-tree hierarchy. This procedure thus
consists of four main steps:

Step 1: Perform erosion Xε = εs
B(X ) on the input im-

age (X = C-node → Image), with progressively
increasing scale s until Xe is partitioned into nc > 1
disjoint connected components Y j ( j = 1, . . . , nc)
(if X vanishes completely for a particular scale s
without being partitioned into separated connected
components, then the current C-node is a leaf node,
with: C-node → size = s ).

Step 2: Perform conditional wavefront expansion on
the partition {Y j } of Xε, to reconstruct a partition
{Z j } of X , that is, a new set of disjoint connected
components Z j such that:

⋃
Z j = X .

Step 3: Create children C-node structures (child[j],
for j = 1, . . . , nc). Call recursively the create-C-
tree(child[j]) procedure.

Step 4: Compute the adjunctional multiscale connec-
tivity function µα(Xk

j , s).

The basic structure of the C-tree creation algorithm is
described hereafter.
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Algorithm: C-Tree Creation

Procedure Create-C-Tree (C-node)
/* Initialization: */
X=C-node→Image; level=C-node→c-level; Xε = X ; continue=TRUE; s = 0;
while (continue)

/* Step 1: Partition X into connected sub-components */
s = s + 1 ; Xε = εB(Xε);
find-connected-components (Xε) �→ {Y j } j=1,...,nc

(i.e. Y j ∈ C :
⋂

Y j = ∅ and
⋃

Y j = Xε)
if (nc == 0) (i.e. Xε == ∅)

continue = FALSE;
C-node → {size = s; num-of-children = 0; }

else if (nc == 1)
C-node → c-function[s] = 1; //(i.e. µα(s) = 1)

else /* nc > 1, in which case:
s = rε (erosion-based connectivity degree) */

continue = FALSE;

/* Step 2: Reconstruct a partition {Z j } of X , starting from the partition {Y j } of Xε */
Wavefront-Expansion ( {Y j } | X ) �→ {Z j }

/* {Z j } is a partition of X , i.e.: ∀ j, Y j ⊆ Z j ,
⋂

Z j = ∅ and
⋃

Z j = X */

/* Step 3: Recursive creation of C-tree children-nodes */
C-node → num-of-children = nc;
For all j = 1, . . . , nc

new-C-node → {c-level = level + 1; Image = Z j ;
area = Area(Z j )}

Create-C-Tree (new-C-node);
C-node → child[ j] = new-C-node;

/* Step 4: Compute adjunctional connectivity function → µα(X, s) */
while (Xε �= ∅)

p=1; Xδ = Xε; not-connected = TRUE;
while (not-connected)

Xδ = δB(Xδ | X ) /* conditional dilation */
if (Xδ is connected) then

not-connected = FALSE;
C-node → c-function[s] = exp(-lambda*p);

//(i.e. µα(s) = e−λ·p )
else p = p + 1;

end-while
Xε = εB(Xε); s = s + 1;

end-while
end-if

end-while

The time devoted by the Create-C-Tree(·) pro-
cedure for the computation of the multiscale con-
nectivity function (Step 4 of the algorithm), can
be drastically reduced if we take into account in-
formation provided by the evaluation performed

for the children C-nodes, and then apply a sim-
ple approximative heuristic based on the fact
that:

µα(X, s) ≤ µα(child(X ), s), ∀s ∈ (0, size(child(X )))
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The information stored in each C-node structure
during the C-tree creation procedure, can be used
for the implementation of new connected morpho-
logical operators, such as generalized-connectivity
openings/closings. These operators can then form the
theoretical basis for the definition of generalized (con-
nected) granulometries, as described in the follow-
ing section. Such generalized morphological operators
can be also applied to image segmentation problems.
For instance, at a post-processing stage following the
marker extraction phase, they could constitute a useful
tool to improve the connectivity structure of markers,
prior for instance to the application of a watershed pro-
cedure [17]. The goal in this case would be to reduce
undesirable effects of the so-called “leakage” related
to the creation of “loose” connections that may result
from the application of typical connected operators.

4. Generalized Connectivity Granulometries

The goal in this section is to apply the multiscale con-
nectivity analysis framework proposed above, in order
to define new connected operators, with a specific ap-
plication in mind, that of granulometric image analysis
[8, 10]. Performance of these new generalized granu-
lometries, as compared to the use of typical connected
operators (such as reconstruction openings), is demon-
strated in a particular problem concerning morpholog-
ical evaluation of sample soilsection images.

4.1. Granulometry and Size Distribution:
Introductory Elements

Granulometry constitutes a very useful and versatile
tool of mathematical morphology. It is a parameterized
family {γs}s=0,1,... of openings that satisfy:

s1 ≥ s2 ⇒ γs1 (X ) ⊆ γs2 (X ), ∀ s1, s2 ≥ 0, X ∈ P(E).

A useful granulometry is obtained by applying typ-
ical morphological openings and setting: γs(X ) =
X ◦ sB (s = 1, 2, . . .). For discrete scales s the struc-
turing element sB can be defined recursively as: sB =
(s−1)B⊕B (B is a basic finite structuring element, e.g.
unit ball). The application of such consecutive opening
operators leads to a progressive smoothing (filtering)
of the image, successively cutting off the sharp “light”
(white) areas of the image not “large” enough to “con-
tain” the structuring element sB. Therefore, evaluating

the evolution of these signals γs in multiple scales s
can give useful information on the “power” (area or
volume) of the light (dark) areas of the image in each
scale s, and can lead to the extraction of very important
features concerning the distribution of sizes within the
image.

The dual equivalent of the above is the parame-
terized family {βs}s=1,2,... of closings, with βs(X ) =
X • sB, for s = 1, 2, . . . , such that: s1 ≥ s2 ⇒
βs1 ≥ βs2 . This is known as antigranulometry asso-
ciated with {γs}s=0,1,.... The two families {γs} and {βs}
(s = 1, 2, . . .) may be considered as a unified sequence
of nonlinear morphological filters, leading to a mul-
tiresolution decomposition of an image X :

�(X ) = {. . . , β2(X ), β1(X ), X, γ1(X ), γ2(X ), . . .}
(13)

This image analysis methodology using nonlinear mor-
phological operators provides information not in the
field of frequency, as is the case of the classical linear
operators, but in relation with variable “sizes” (scales),
in the sense that the variations of γs(X ) and βs(X ) in
multiple scales s indicates the distribution of respec-
tive sizes in the image X , depending on the form of the
structuring element B.

The concept of multiscale granulometric analysis
thus leads to two important tools of mathematical mor-
phology known as size distribution and size density.
Let’s consider for instance a binary image X . Size dis-
tribution can be defined as:

SX (s) = 1

Area (W )

{
Area (γs(X )) for s ≥ 0

Area
(
β|s|(X )

)
for s ≤ −1

(14)

where Area (X ), indicates in fact the number of white
pixels for a binary image X , and W ⊇ X is the analysis
window of X .

The size density of an image X can be then defined
as:

DX (s) = 1

Area (W )

×
{

Area (γs(X ) − γs+1(X )) for s ≥ 0

Area
(
β|s|(X ) − β|s|−1(X )

)
for s ≤ −1

(15)

It is clear from the above that the size distribu-
tion SX (s) reflects the “weight” of each individual
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component γs and βs (s = 1, 2, . . .) in the multiscale
decomposition �(X ) of image X , while the size density
DX (s) gives information on the “weight” of elements
{γs −γs+1} and {βs+1 −βs} (s = 1, 2, . . .), which form
a new size-density multiscale decomposition of image
X defined as:

�(X ) = {. . . , β2(X ) − β1(X ), β1(X ) − X,

X − γ1(X ), γ1(X ) − γ2(X ), . . .} (16)

Granulometries can be applied in a variety of im-
age analysis problems obtaining useful results. In this
paper, we study the application of such methods in
the particular problem of analyzing geological images
taken from sample soil-sections, in order to investi-
gate the possibility of developing a novel computer-
vision based tool for automatic analysis and quality
assessment of soil regions. Evaluating the differences
of consecutive openings/closings in multiple scales s
applied in a sample image, and analyzing the evolution
of the signal DX (s), may lead to the identification of
characteristic sizes (related to the scale) in the image.
These data may facilitate significantly the extraction of
interesting conclusions regarding the structure of the
particular soilsection, and may thus constitute a use-
ful tool for analysing and evaluating the quality of the
respective soil sample.

4.2. Connected Operators and Granulometries

The granulometric analysis described in the previous
paragraph is based on the application of typical mor-
phological operators (openings/closings). This proce-
dure leads to the computation of the size density signal
DX (s), which, as discussed above, provides useful mul-
tiscale information concerning the presence of charac-
teristic sizes within the image. A major issue, however,
is to ensure that the variations of the size density signal
are as representative as possible of such morphological
features, indicating with precision and reliability the
presence of characteristic elements in the image. For
this reason, the use of connected operators could prove
more appropriate.

A connected operator is an operator that coarsens
the partition of an image into (foreground/background)
connected components [4]. The concept of partition of
a space A is defined as a set of connected components
{Ai } that are disjoint, and for which:

⋃
Ai = A [13]. A

partition {Ai } is said to be coarser (finer) than another
one {B j } if any pair of points belonging to the same B j

(Ai ) also belong to a unique Ai (B j ). The main property
of connected operators is that, as opposed to classi-
cal morphological operators that perform “local” func-
tions using a structuring element, they do not change
values at individual pixel level but, instead, treat en-
tire connected components as a whole, operating on
the flat zone level. A direct consequence is that con-
nected operators do not affect boundaries in an image,
thus more accurately preserving contour (size/shape)
information. This characteristic property of connected
operators can prove of importance for many applica-
tions, including granulometric analysis and size density
computation that constitutes the focus of this section.

A typical example of connected operator is the
(conditional) reconstruction opening, which can be
obtained by iterating conditional dilations:

ρ(Y | X ) = lim
n→∞ δn

B(Y | X ) (17)

where Y is in fact a marker that is used to reconstruct
(part of) the original image-set X (mask). It can be
proved that ρ(Y |.) constitutes an opening that extracts
all the connected components of image X intersecting
marker Y . A very common implementation of recon-
struction is obtained using as marker the result of a
typical opening γs(X ) = X ◦ s B at a particular scale
s. This operator is often called multiscale opening-by-
reconstruction, defined as follows:

ρs(X ) = ρ(γs(X ) | X ) = lim
n→∞ δn

B(γs(X ) | X ) (18)

The dual closing-by-reconstruction operator can be
defined similarly.

These opening/closing-by-reconstruction filters are
very useful since they simplify the input image elim-
inating completely the elements of size less than the
scale s of the filter, while preserving exactly all larger
connected components. Another typical connected op-
erator is the area opening/closing, which extracts all
connected components that have an area (number of
pixels for the binary case) not below a given thresh-
old. Any type of such connected morphological op-
erators can be used to define new granulometries. For
instance, reconstruction granulometries can be defined
using a family {ρs} of reconstruction operators. Sim-
ilarly, area granulometries can be obtained using area
openings/closings.

All these typical connected operators operate on an
image by finding and extracting with precision (bound-
ary preservation property) all connected components
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that satisfy a criterion (i.e. they have a size large enough
to contain a structuring element, in the opening-by-
reconstruction case, or their area is not below a thresh-
old, for the area opening case). Although this may be
useful in many image analysis problems where exact
contour information is important, the major drawback
of these typical connected operator lies on the fact
that they cannot distinguish between “loosely” and
“strongly” connected image components. Such addi-
tional information related to the “degree” of connec-
tivity of an image, could be quantified using the gen-
eralized connectivity measures defined in Section 2. In
the sequel, the multiscale connectivity analysis frame-
work introduced in Section 3, is applied to this problem
of defining generalized granulometries for morpholog-
ical size/shape evaluation.

4.3. Multiscale Connectivity
and Generalized Granulometries

As we have described in Section 3, a binary image-set
X can be represented by a hierarchical tree-structure
called connectivity tree (or C-tree). At each level k, the
nodes of the C-tree correspond to connected compo-
nents {Xk

j } j=1,...,nk . This set of connected components
at each C-tree level, constitutes in fact a partition for the
opening-by-reconstruction at a particular scale sk ≥ k,
that is:

⋂
j Xk

j = ∅ and
⋃

j Xk
j = ρsk (X ).

Using the information stored at each C-node, as de-
scribed in paragraph 3.2 during the recursive C-tree
creation procedure, new generalized multiscale con-
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Figure 4. Multiscale connectivity functions for two C-nodes of the example image-set of Fig. 3. (a) C-node (2,2) and (b) C-node (4,2).

nectivity operators can be defined that extract all
C-node components satisfying a particular criterion.
Such criteria can be based on the size (i.e. max scale
smax : εs(Xk

j ) = ∅, ∀s > smax) and on a generalized
connectivity measure µ of each C-node (e.g. the mul-
tiscale connectivity function µα(Xk

j , s)). Generalized
connectivity operators can then be defined as follows:

φs(X | θ ) =
⋃ {

Xk
j ∈ C Tree(X ) :

size
(
Xk

j

) ≥ s and µ
(
Xk

j

) ≥ θ
}

(19)

where θ is a given thresholding connectivity measure,
and size(X ) can be for instance defined as the maximum
scale smax : ∀s > smax, ε

s
B(X ) = ∅. Applying these op-

erators on a multiscale basis, we can now define a class
of generalized connectivity granulometries {φs}, lead-
ing to a new size-density multiscale decomposition �

of image X :

�(X | θ ) = {X − φ1(X | θ ), φ1(X | θ ) − φ2(X | θ ),

φ2(X | θ ) − φ3(X | θ ), . . .}

The new generalized-connectivity size-density of
image X is then defined as:

DX (s | θ ) = Area (φs(X | θ ) − φs+1(X | θ ))

Area (W )
(20)

Let’s apply now this generalized connectivity gran-
ulometry to the example-set of Fig. 3. The multi-
scale connectivity profiles for two nodes (2,2) and
(4,2) are shown in Fig. 4. The size-densities resulting
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Figure 5. Size densities for the example image-set of Fig. 3 using generalized-connectivity granulometries with two different thresholding
connectivity profiles. (a) Generalized size density with thresholding connectivity profile θ1 and (b) Generalized size density with thresholding
connectivty profile θ2.

from the application of generalized-connectivity gran-
ulometries, for two different thresholding connectiv-
ity profiles θ1(s) and θ2(s), are shown in Fig. 5(a) and
(b) respectively. We may note that, depending on the
“strictness” of the thresholding connectivity profile,
the functionality of the operator change, treating for
instance C-node (4,2) either as connected (case a, con-
nectivity threshold θ1), or as disconnected (case b, with
connectivity threshold θ2), in which case the resulting
size density provides indication on all four character-
istic sizes included in the test image-set of Fig. 3. This
example provides a first illustration of the power and
versatility of the proposed generalized-connectivity

multiscale operators as related to the reliable preser-
vation of shape/size information within an image. To
further demonstrate the functionality of these oper-
ators, the generalized granulometric image analysis
framework is applied to a particular problem concern-
ing morphological evaluation of soilsection images, as
described in the following paragraph.

4.4. Application to Soilsection Image Analysis

In automated soilsection image analysis, a very impor-
tant task is to detect compound soil formations (e.g.
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Figure 6. Sample soilsection-1: test image for granulometric analysis experiments. (a) Original grayscale image; (b) Thresholded binary image;
and (c) A single connected component.

Figure 7. Multiscale connectivity partition: Four different C-tree levels for the sample soilsection-1. (a) Connectivity level = 1; (b) Connectivity
level = 2; (c) Connectivity level = 3; and (d) Connectivity level = 4.
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elementary objects, grains etc.), differentiating them
from void space, in order to evaluate pertinent morpho-
logical properties such as size/shape distributions. Soil
structure is concerned with the arrangement of primary
particles and voids and the variations of size/shape
characteristics. Soilsection images exhibit a great vari-
ety of geometric features which can be either 1D, such
as edges or curves, or 2D such as light or dark blobs
(small homogeneous regions of uncertain shape, which
sometimes seem to be randomly distorted circles or el-
lipses). Extraction of such morphological features and
estimation of their numerical properties, like size den-
sity, can thus provide useful information for the evalu-
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Figure 8. Size densities for soilsection-1. Comparative results using typical, reconstruction and generalized-connectivity granulometries. (a)
Typical granulometry; (b) Reconstruction granulometry; and (c) Generalized granulometry using multiscale connectivity analysis.

ation of soil structure quality. In order to obtain reliable
and representative measures of such properties, based
for instance on morphological granulometries, the op-
erators applied need to detect with precision all impor-
tant homogeneous regions constituting soil formations
of interest within the image. The use of connected op-
erators in a granulometric image analysis framework
can thus prove a good choice, globally treating con-
nected regions in an image while preserving important
contour information.

However, as it has already been mentioned above,
typical connected operators such as reconstruction or
area openings, present an important drawback, known



126 Tzafestas and Maragos

as leakage problem, which leads to the creation of un-
desirable connections within an image, when thin con-
necting paths between large objects exist. This problem
is particularly hindering for soilsection image analysis
and evaluation tasks, where strongly connected soil for-
mations need to be identified and differentiated from
loosely connected regions (which in fact should be par-
titioned into a set of finer disjoint connected compo-
nents). This is illustrated in Fig. 6, where we present

Figure 9. Sample soilsection-2: Multiscale connectivity partitioning. (a) Soilesection 2: Original grayscale image; (b) Thresholded image:
Connected components; (c) Connectivity level = 2; and (d) Connectivity level = 4.

a sample soilsection that will be used in the sequel
as the first test image for the granulometric analysis
experiments. Figure 6(b) shows the binary image re-
sulting from the thresholding of the original grayscale
soilsection-1 (at gray-level value = 32, with the gray-
levels of the original image ranging from 0 to 255).
However, what is particularly important to point out is
illustrated in Fig. 6(c), which shows a single connected
component resulting from the application of a simple
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algorithm using 8-connectivity. This characteristic ex-
ample demonstrates the problems that may result from
the application of typical connected operators, treating
as connected components object formations that should
be intuitively considered as separate.

Let’s apply now the multiscale connectivity analy-
sis framework, introduced above, for the binary im-
age component of soilsection-1 shown in Fig. 6(c).
Figure 7 illustrates the recursive C-tree creation proce-
dure, showing four different connectivity levels (c-level
= 1 to 4) and the respective partitions of the origi-
nal binary image. This figure demonstrates the suc-
cessive partitioning of a typical “loosely-connected”
component into progressively stronger connected par-
ticles. The information stored in the C-nodes during
this C-tree creation procedure can then be used by a
generalized-connectivity granulometry to evaluate size
density measures, as described in the previous sec-
tion. Such generalized size-densities can be “tuned”
to provide more accurate and reliable connected-
shape information, by selecting appropriate thresh-
olding connectivity profiles or by choosing a differ-
ent decision criterion in Eq. (19), depending on the
application.

Figure 8 shows comparative granulometric analysis
results for the soilsection-1 binary test-image, using
typical, reconstruction and generalized-connectivity
operators. The size densities resulting from the appli-
cation of typical openings and reconstruction openings
(Fig. 8(a) and (b) respectively) constitute in fact two ex-
treme cases, with the first one containing a wide spec-
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Figure 10. Granulometric analysis of soilsection-2. (a) Typical granulometry and (b) Generalized-connectivity granulometry.

trum of sizes, while the latter contains a limited number
of spikes corresponding to typical connected compo-
nents in the image. In other words, we are presented
with two situations: (a) the use of classical morpho-
logical openings, which results in size densities con-
taining a large amount of information that may, how-
ever, not be representative of actual sizes/shapes in-
cluded in the image (similar to performing an image
over-segmentation), and (b) the application of typi-
cal connected operators (e.g. reconstruction openings),
which create granulometries that actually filter-out the
results of (a), but cut-off important size information
(similarly to performing an excessive over-filtering on
the results of (a)). As opposed to the above two sit-
uations, the generalized connectivity granulometries
result in size-densities (see Fig. 8(c)) that constitute
an intermediate solution, which can be tuned to pre-
serve the advantages and reduce the drawbacks of each
one of the above two extreme cases. The results shown
in Fig. 8(c) are more representative of characteris-
tic sizes contained in the original soilsection binary
image of Fig. 6(b), potentially facilitating the subse-
quent image modeling and soil-structure evaluation
steps.

Figures 9 and 10 show the results obtained for a
different sample test image, soilsection-2. Figure 9(a)
shows the original grayscale image, while Fig. 9(b)
shows the major connected components (labeled 1–6)
for the binary image that results from thresholding
the original soilsection-2 image at gray-level 53 (gray-
levels of soilsection-2 containing values ranging again
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from 0 to 255). Figure 9(c) and (d) illustrate the C-tree
creation procedure at two different connectivity levels,
c-level = 2 and c-level = 4 respectively. It is par-
ticularly important to note how the typical “loosely
connected” region 4 (at the particular gray-level of
Fig. 9(b)) is recursively partitioned into regions 4a, 4b
(Fig. 9(c)), and 4c, 4d (Fig. 9(d)). Similarly, region 3 is
partitioned into the “strong” connected components 3a,
3b and 3c (at c-level = 4, Fig. 9(d)). If one refers to the
original soilsection image, this hierarchical multiscale
decomposition into connected regions seems more ap-
propriate, at least with respect to a granulometric im-
age analysis. Figure 10(a) and (b) show the size densi-
ties obtained for soilsection-2, using typical openings
and generalized-connectivity granulometries, respec-
tively. One may notice once again how the latter better
captures the size information contained in the original
grayscale image.

The proposed multiscale connectivity analysis thus
leads to image representations that contain more ac-
curate and reliable size information, incorporating
complex multiscale geometrical cues related to the
connectivity structures and the presence of compound
object formations (shape information) within an im-
age. Moreover, the proposed theoretical framework can
accommodate a variety of connectivity-related crite-
ria, similar to the definition of “adaptable fuzzy con-
nectivity measures”, which means increased versatility
and adaptability to a variety of image processing and
computer vision applications.

5. Conclusion and Future Work

This paper has introduced a multiscale connectivity
analysis framework based on an axiomatic definition
of generalized morphological connectivity measures,
such as an adjunctional multiscale connectivity func-
tion. This function in fact incorporates geometrical cues
quantifying the notion of “how strongly connected” is
a set, that is, “how easily” it can be partitioned into
disjoint non-empty sub-sets through the recursive ap-
plication of an antiextensive morphological operator
(like opening or antiextensive erosion).

The concept of connectivity tree (C-tree) has then
been presented, leading to a hierarchical representa-
tion of binary images. The information incorporated
in the C-tree structure has been used to establish new
generalized connected operators. Based on the defini-
tion of appropriate decision criteria (including the use
of thresholding connectivity profiles), these general-

ized operators can be tuned to differentiate between
“strong” and “loose” connections within an image,
thus controlling the undesirable effects of the so-called
“leakage” problem, related to the application of typi-
cal connected operators (such as reconstruction or area
openings).

The generalized connectivity operators introduced
in this paper have been used to define new generalized
granulometries, aiming at a more accurate and reli-
able evaluation of morphological properties, such as
characteristic size/shape distribution within an image.
Comparative results obtained for a particular problem
of soilsection image analysis demonstrate the power
and versatility of the proposed multiscale connectivity
analysis framework.

Potential future applications of such generalized
connected operators, based on the proposed multi-
scale connectivity analysis and the C-tree concept, be-
sides an improved granulometric image analysis de-
scribed in this paper, also include: (a) image seg-
mentation to improve the “connectivity properties”
at the marker extraction phase [17]; (b) reliable
shape/size representation for statistical image analy-
sis and modeling (employing for instance GRFs [16],
or MRFs [7]); (c) other applications of connected
operators, like in motion detection/analysis and ges-
ture recognition. In our on-going work, we plan to
extend these operators for analyzing grayscale im-
ages and use them for applications related to im-
age segmentation and statistical image modeling and
classification.

Note

1. In fact µ is just defined as a non-negative function and does not
necessarily comply with the formal definitions in the measure-
theoretic sense.
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