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Abstract This paper introduces the class of min max classifiers. These are binary-valued functions that 
can be used as pattern classifiers of both real-valued and binary-valued feature vectors. They are also 
lattice-theoretic generalization of Boolean functions and are also related to feed-forward neural networks 
and morphological signal operators. 

We studied supervised learning of these classifiers under the Probably Approximately Correct (PAC) 
model proposed by Valiant. Several subclasses of thresholded min-max functions are shown to be learnable, 
generalizing the learnability results for the corresponding classes of Boolean functions. 

We also propose a LMS algorithm for the practical training of these pattern classifiers. Experimental 
results using the LMS algorithm for handwritten character recognition are promising. For example, in our 
experiments the min-max classifiers were able to achieve error rates that are comparable or better than 
those generated using neural networks. The major advantage of min max classifiers compared to neural 
networks is their simplicity and the faster convergence of their training algorithm. 

Pattern classification 
Character recognition 

Machine learning Mathematical morphology Image processing 

l. INTRODUCTION 

There is much  interest in the field of pa t tern  recognit ion 
on t ra inable  pa t t e rn  classifiers, as seen, for example, in 
the growth  in the area of neura l  networks.  Parallel  to 
this development ,  in the field of machine  learning there 
have been many  theoretical  advances  on dis t r ibut ion-  
free learning of Boolean functions. This learning frame- 
work is known  as the probably approximately correct 
(PAC) model,  p ioneered by Valiant  (t) and  fur ther  dev- 
eloped by him and  o ther  researchers.  There  is already 
a wealth of l i terature abou t  the PA C learning model; 
example s  i nc lude  V a l i a n t ,  (~'2) B l u m e r  et al., ~3'4l 
Haussler,  (s) Kearns  et al. (6) Kearns ,  17) Rivest (s) and  
Schapire. w) Mos t  of the results in PA C  learning deal 
with Boolean functions.  If such funct ions are used as 
(Boolean) pa t t e rn  classifiers, then the input  features 
mus t  be binary-valued.  Al though  this may  be sufficient 
for classifying high-level predicate-l ike features, most  
of the pa t t e rn  recogni t ion applications,  such as com- 
puter  speech and  object recognition, involve real-valued 
feature vectors. 

* This research was supported by the National Science 
Foundation under Grant MIPS-86-58150 with matching 
funds from Xerox, and in part by the ARO Grant DAAL03- 
86-K-017l to the Brown-Harvard-MIT Center for Intelligent 
Control Systems. 

t The authors were with the Division of Applied Sciences 
at Harvard University when this research was done. 

In this paper,  we present  the class of rain-max classi- 
fiersl] and study methods  of their  au tomat ic  design. 
These classifiers can accept as inputs  bo th  real-valued 
and  binary-valued feature vectors. Each input  variable  
to these functions is in the range [0, 1], in cont ras t  to 
{0, 1} for the Boolean classifiers. Moreover ,  these r a i n -  
max classifiers are natural  generalizations of the Boolean 
functions,  because they are based on M I N / M A X  oper- 
at ions which are the lat t ice-theoret ic  counterpar t s  of 
Boolean A N D / O R  operat ions on real numbers.  There- 
fore, the learnabil i ty  results on  r a i n - m a x  classifiers we 
present  in this paper  generalize the Boolean counter-  
parts  expounded  in previous works. 

Ano the r  mot iva t ion  for working with the m i n - m a x  
classifiers is their  close relat ion to a large class of 
non l inear  s ignal/ image opera tors  known  as morpho -  
logical filters, which are defined via m i n - m a x  opera-  
t ions on their  inputs. As discussed in Serra 11°) and  
Maragos  and  Schafer, (111 these m i n - m a x  morphologi -  
cal opera tors  can be applied to a b road  variety of 
feature extract ion and  shape analysis /detect ion tasks 
in images or arbi t rary geometrical objects. Hence, learn- 
ing of the r a i n - m a x  classifiers provides  an  ability for 
au tomated  t ra in ing  of the above  feature extract ion and  
shape analysis /detect ion signal operators .  

11 We shall use the terminologies "min-max classifier" and 
"thresholded min max function" interchangeably. 
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In this paper we show that three subclasses of thre- 
sholded m i n - m a x  functions are learnable in the PAC 
model. We achieved these results by providing both 
polynomial  bounds on the number  of training samples 
and devising polynomial time learning algorithms. The 
subclasses are direct generalizations of the Boolean 
positive term, positive clause, and k - D N F  functions. 
This last subclass of min max classifiers is the most 
interesting since it is related to morphological  filters 
which are maximum of minimum over a local moving 
window. 

Besides the theoretical learnability results, we also 
propose a Least Mean Square (LMS) algorithm for 
actual design of ra in-max classifiers. Salembier 1~2) used 
an LMS algorithm to train morphological  filters that 
are defined via min max operations. We adapted his 
approach to the design o fmin  max classifiers and also 
improved it by refining the computat ion of the partial 
derivatives involved. The improvement  translates to 
lower training error rate. We then applied the LMS 
algorithm to the problem of handwritten character 
recognition. Our  simulations show that m i n - m a x  clas- 
sifiers are desirable alternatives to more traditional 
classifiers such as feed-forward neural networks. Their 
main advantages are simplicity and generally faster 
convergence of the training algorithm. 

This paper is organized as follows: in Section 2, we 
define the m i n - m a x  functions and their thresholded 
counterparts. A discussion of their relations with other 
classifiers is included. We also investigate aspects of 
their representation power using techniques from ma- 
thematical morphology.  The PAC learnability results 
are presented in Section 3, where we show that several 
subclasses of threshold m i n - m a x  functions are learn- 
able under the PAC learning model. Then in Section 
4 we turn to practical training of thresholded min max 
functions using the LMS algorithm. The final section 
(Section 5) describes the application of the LMS algo- 
rithm to handwritten character recognition, which con- 
tains a discussion of the feature extraction procedures 
and the experimental results. 

2 .  M I N - M A X  F U N C T I O N S  

Here we start from general definitions about ra in-  
max functions and then use tools from mathematical  
morphology to explore some of their properties and 
relations to Boolean functions and pereeptrons. 

2.1. Definitions 

A Boolean function B( b ), b = (b 1 . . . . .  bd) ~ {0, 1}d, in 
disjunctive normal form (DNF) is a finite disjunction 
(i.e., Boolean OR) of terms. A term is a conjunction (i.e., 
Boolean AND)  of literals. A literal is either a Boolean 
variable b i e {0, 1 } or its complement b-i. To generate a 
rain max function from a D N F  Boolean function, we 
replace the uncomplemented Boolean inputs b~ with 
real-valued variables xi~[O, 1], complemented vari- 

m . I A  
ables bi with real complements xi =1 - xi, and the Boo- 
lean A N D / O R  with M I N / M A X  (denoted by /x / v ).* 

Formally, let x" = (xl, x > . . . ,  xn) be a real-valued vec- 
tor in the d-dimensional unit cube [0, 1] d. We define a 
rain-max function f :  r0, 1] d ~ [0, 1] with input ~ as the 
function 

f ( x l , x 2  . . . . .  xd)= V A l i ,  Ii~{xi, l - - x i }  (1) 
j ielj 

where an arguement l~ is called a literal, equal either 
to a variable x~ or its complement x'~. Each minimum 
function A ~,~l~ is called a rain term. Each I j  denotes 
the set of coordinates of the input vector ~" that appear 
in the argument of the j - th  min term. The size of  a rain 
term is the number ofliterals in the minimum function. 
The maximum V j has a finite number of terms. Thus, 
a m i n - m a x  function is a finite maximum ofmin  terms. 
Note  that the restriction o f a  m in -max  function on the 
finite discrete space {0, 1} d is a Boolean function. 

A Boolean func t ion  B is calledmonotone (orpositive) 
if B(fi') < B(b)  whenever ~" < b, where 8" < b means 
a~ < bi for all i. Gilbert (la) showed that B is monotone  
if and only if all its variables appear uncomplemented. 
Similarly we call a function g: [0, 1] d ~ [0, 1] monotone 
if 

Z < _ y ~ g ( Z ) < _ g ( 7 ) ,  V ~ , y  (2) 

It can be shown that a min max function is monotone  
if and only if it admits an expression that does not  
contain any complemented variables. 

To use a ra in-max function f as a classifier perform- 
ing binary decisions we need to threshold f at some 
arbitrary value 0E[0, 1]. This creates a thresholded 
rain-max function (rain-max classifier) fe: [0, 1]~ --* {0, 1 } 
defined by 

f o ( ~ ) = p [ f ( ~ ) > O ] = { 1 0  if f ( Z )  > 0, 
otherwise. (3) 

P(.) is called the predicate function. An example of a 
thresholded rain-max function is P{((x,  /x x4) v (x 2/x 
( 1 - x 3 ) / x  Xs) )_> 0.6}. It is genera l ized  f rom the  
Boolean function (b 1 "b 4 +b2.b-3.bs). The rain term 
(x, /x  x4) is size two while (x2/x (1 - Xa) A Xs) is size 
three. In the second min term, the variable x3 is com- 
plemented. Note  that there are an infinite number of 
thresholded min -max  functions corresponding to a 
Boolean function. This is due to the freedom in the 
choice of the threshold value 0, which in our work will 
be a free parameter to he learned. A thresholded ra in-  
max function is monotone  if its corresponding ra in-  
max function is monotone.  

Exchanging the roles of A N D  and OR in a D N F  
Boolean function transforms the latter into a conjunc- 

* In this paper, Boolean AND is denoted by the product 
symbol '.', which may be left out occasionally. The Boolean 
OR is denoted by '÷ ' .  The symbol v and /~ are defined as 
V ,~,x, = max,{x,} and A ,~,x, = min,{x,} if the index set I 
is finite; if I is infinite, then the max and min should be 
replaced by supremum and infimum, respectively. 
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tive normal form (CNF). Similarly, exchanging the 
roles of M I N  and MAX in a (thresholded) min max 
function will yield a (thresholded) max-rain function, 
i.e., a (thresholded) minimum of maxima. Due to the 
straightforward duality relationships between these 
two latter function classes, in this paper we focus on 
functions in the m i n - m a x  form. 

An input vector is classified as a positive or negative 
instance of a thresholded m i n - m a x  function c(Z) ac- 
cordingly to whether the output  of c(Z) is 1 or 0, 
respectively. We shall also refer to this classification 
process as the labeling of the input vector ~" by c(Z), 
and call general 0-1-valued functions classifier func- 
tions to emphasize the possibility of their use as pat- 
tern classifiers. In the setting of our learning model, 
classifier functions are also referred to as concept func- 
tions, or simply concepts. We shall use the latter name 
more often in the rest of the paper. A collection of 
concepts is called a concept class, which is usually 
denoted by c~. The set of all thresholded ra in-max 
functions with d variables is denoted by (£~i . . . .  • 

2.2. Morphological representations and relations to 
Boolean functions 

Here we establish some relationships between (thre- 
sholded) m i n - m a x  functions and Boolean functions 
using concepts from morphological  filtering as dis- 
cussed in Maragos  and Schafer. (14) First note the fol- 
lowing three useful properties of thresholding, which 
can be easily proven. The minimum and maximum 
functions obey a threshold homomorphism property: 

P(x /x y > O) : P(x  >_ O) A P(y > O) 

= P(x >_ O).P(y >_ 0), (4) 

P(x v y > O) = P(x > 0 )  v P(y > O) 

= P(x >_ O) + P(y >_ 0). (5) 

In addition, we have the threshold reconstruction prop- 
erty: 

1 

x =  SP(x>O)dO,  Vx~[0 ,1]  (6) 
o 

From (1), (3) and the above properties it follows that 

fo(x l ,x2 . . . . .  x.d)= V A P(li>O), lie{xi,  l - x ~ }  
j i ~ [ j  

(7) 

Thus, a thresholded ra in-max function is equal to the 
disjunction of terms containing Boolean variables 
formed by thresholding the input coordinates xi or 
their complements. Turning to the thresholding of a 
complemented variable, 

P(x'  _> 0) = P(1 - x _> 0) = P(x < 1 - 0). (8) 

The thresholding of x ' =  1 -  x is not  equal to the 
Boolean complement P(x > O) = P(x < 0) in general. 
However,  this particular definition of x' remains a 
reasonable choice because it is identical to the Boolean 
complement if x takes on only 0, 1 values. It also pre- 
serves the range of the variable; i.e., x ~ [0, 1] ~ x' E [0, 1]. 

To understand the behavior  of the thresholded 
m i n - m a x  function, it is helpful to consider its geome- 
trical properties. The simplest form of such functions 
is the thresholding of a single minimum or a single 
maximum. The decision regions of these for the special 
case of d = 2 is shown in Fig. 1. 

The positive region for the thresholded minimum 
function is the axes-parallel square whose sides inter- 
sect the axes at 0 (the threshold) and with one vertex at 
(1, 1), while that of the thresholded maximum function 
is an L-shaped region formed by deleting the square 
in the lower left hand corner of the domain [0, 1]. 2 
These conclusions were drawn using the thresholded 
homomorphism properties [equations (4) and (5)]. For  

.................................... N ! i l  

0 ] x 0 0 I x 

Fig. 1. In the special case of d = 2, the positive regions of the thresholded minimum function (shaded area 
in left figure) takes the form of an axes-parallel square with one vertex at (1,1); while that of a thresholded 

maximum function (right) is an L-shaped region formed by cutting out the unshaded square. 
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example, the positive region of P(x/x  y >_ O) is equal 
to {x > 0} c~ {y > 0} (set intersection because of the 
Boolean AND). For arbitrary dimensions, the positive 
region of the thresholded minimum function becomes 
a d-dimensional cube with one vertex at (1 . . . . .  1). As 
for the maximum function, the negative region be- 
comes a d-dimensional cube near the origin. We re- 
mark that this is related to the axes-paralM rectangles 
described in Blumer et al. 14) However, the axes-parallel 
rectangles cannot be represented using thresholded 
min-max functions, which is the primary interest in 
this work. 

Next we present a result that indicates the repre- 
sentation power of monotone min-max functions. Some 
definitions are needed first: Consider arbitrary func- 
tions f :  [0, 1] d--+ [0, 1] that are consistent generaliza- 
tions of Boolean functions, i.e., their value is binary 
whenever the input vector is binary; formally 

/(Z0)e{0,1}, V0e[0,1] (9) 

where Y0e{O, 1} d is a thresholded (and hence binary) 
input vector: 

~o = (x,,o . . . . .  X~,o) ~= (P(xl  >_ o) . . . . .  P(xd >_ 0)) (10) 

We also say that f commutes with thresholding if 

fo(Z)  = f(Zo),  VZ, 0 (11) 

Commuting with thresholding is an important prop- 
erty since it implies that the Boolean function f (Zo)  
obtained from f by thresholding the input vector at 
any 0 (and hence restricting f on the finite discrete 
space {0, 1} d) gives identical values with thresholding 
the real-valued output o f f  at O. It will be shown in the 
following theorem that if f commutes with threshold- 
ing, then it is monotone. Further, this theorem estab- 
lishes that functions that commute with thresholding 
can be represented by monotone min-max functions. 

Theorem 1. Let f : [0 ,  i] d--+ [0, 1] be a function that 
obeys property (9). Then f commutes with threshold- 
ing if and only if it is monotone min-max function, or 
equivalently if and only if is a min max function with- 
out any complemented variables. 

Proof. Let fcommute with thresholding. Consider bi- 
nary vectors a" _< bE {0, 1} d. We can always find some 
real vector Z such that d=Y0 ,  and b=Y02 with 
01 >_ 02. Then, ifB is the Boolean function correspond- 
ing to f, sine f(Z0) = B(Zo) for each 0, we have 

B(~)  = f (Yo , )  = fo , (~)  <-- fo2(Z) = f(Zo2) = B(b)  
(12) 

Hence B is monotone. Since the monotone B admits a 
DNF expression as a unique irreducible OR of posi- 
tion AND terms, it follows from (6) that: 

1 1 

f ( Y )  = Sfo(Z)dO = ~f(Zo)dO 
0 0 

1 

= ~ V A P(x,>_O) dO 
0 J i~Ij 

1 

1 

= V A SP(x i>O)  dO= V A xi 
j i~lj  0 j i~Ij 

Hence f is equal to a min-max function. Further f is 
monotone because its min-max representation con- 
tains no complements. Conversely, let f be a mono- 
tone rain-max function. Then 

f ( Y ) =  V A x , ~ f o ( Z ) =  V A P(x,>_O)=f(Uo)  
j i~lj  j i~lj  

(13) 

This follows by direct substitution and applying thres- 
hold homomorphism twice. Hence f commutes with 
thresholding, which completes the proof. [] 

The essence of the above theorem is that any mono- 
tone real-input real-output function that yields a bi- 
nary output whenever the input vector is binary and 
commutes with thresholding can be represented as a 
min-max function (with no complements). Conver- 
sely, the class ofthresholded monotone min-max func- 
tions is almost isomorphic to Boolean functions, ex- 
cept for the generally unknown parameter 0 which is 
to be learned. 

2.3. Relations to other classifiers 

Beside the Boolean classifiers, another class of clas- 
sifiers the thresholded min max functions are related 
to three layer perceptrons. The link is provided by 
the thresholded homomorphism properties (4) and (5). 
We demonstrate this using an example. Consider the 
thresholded min-max function 

P(x 1 v (x'2 /x x4) -> 0). (14) 

Applying first (5) and then (4), we derive an equivalent 
function 

P(xl >_ 0) + (P(x~ _> o) .e (x3  >_ 0)). 

Finally, we use (8) to arrive at the desired form 

p ( x l > O ) + ( P ( x 2 < l - - O ) . P ( x 3 > O ) ) .  (15) 

Observe that each predicate function in the above 
expression is the thresholding of a single variable, 
which can be implemented using a single layer percep- 
tron. The Boolean conjunctions and disjunctions can 
also be implemented using single layer perceptrons. 
Therefore the original thresholded min max function 
in (14) can be implemented using a three-layer percep- 
tron. It is easy to see that any thresholded min-max 
function can be implemented using a three layer per- 
ceptron because the thresholded min-max function is 
formed by the composition of several minima and a 
maximum. It is not true that any three layer perceptron 
can be expressed as a thresholded rain-max function. 
To see the reason, one simply has to look at (15). The 
first layer of perceptrons have the form P(l~ > 0). Their 
decision regions are parallel to the coordinate axes. 
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Since the second and third layers are Boolean AND 
and OR respectively, the positive region of the cas- 
caded structure should have boundaries parallel to the 
axes. For a general three-layer perceptron, this condi- 
tion is not necessarily true. Therefore, d (~min-max is a 
subclass of the class of general three layer perceptrons. 

Another type of classifier that is related to threshol- 
ded min max functions are the axes-parallel rectan- 
gles described in Blumer et al. ~4) However, they did not 
address the algebraic representation of axes-parallel 
regions using min-max functions. Finally, in reference 
(15) the authors mentioned decision trees that have 
axes-paralM decision nodes. It is obvious that the 
rain-max classifiers can be constructed using them. 

The structure of a min-max classifier can be envi- 
sioned as a feed forward network (See Fig. 2), the first 
layer consisting of minimum functions, the second a 
maximum and the third a thresholding. Networks with 
nodes as rank order operators have appeared in the 
literature previously. For example, Palmieri ~16"17) con- 
sidered networks with nodes that output the sorted 
values of their inputs, and trained the multiplicative 
weights connecting the successive layers. In our work, 
we train the subsets of vector components on which 
the nonlinear elements operate. Wilson as) also used 
networks of "weighted rank order", which replaced the 
rank ordering of the inputs by ordering of them with 
additive weights. Training of his network is equivalent 
to finding these additive weights. 

3. PAC L E A R N I N G  

The PAC model is an attempt at formalizing the 
study of machine learning. It was proposed by Valiant 
in reference (1), and since then there is much theoretical 
development related to PAC (for example, see the 
references at the beginning of Section 1). Attractive 
features of PAC include its emphasis on efficient algo- 
rithms and the lack of assumption on the probability 
distribution of the feature space. In this section, 
we shall show that the following three subclasses of 
c ~  . . . .  are learnable under the PAC model. 

Thresholded monotone minimum functions. A threshol- 
ded monotone minimum function has the general 
form: P( A i~x~ _> 0), where I is the set of coordinate 
indices of the input vector. This class of functions is 
denoted by the symbol c~d. 

Thresholded monotone maximum functions.  These 
functions are dual forms of the thresholded mini- 
mum functions. The general form is P( V i~txi >- 0), 
where I is again the set of coordinate indices of the 
input vector. The collection of all thresholded mono- 
tone maximum functions is denoted by the symbol 

Thresholded k-rain-max functions. They are threshold- 
ed min-max functions with the restriction on the 

size of each min term to be _< k. The class is denoted 
by the symbol C~kd.m~ . . . .  • 

These classes of functions are generalizations of the 
Boolean positive term, positive clause, and k-DNF 
functions, respectively. 

3.1. Background 

We now present some of the key ideas and results 
from PAC learning theory. For a more detailed de- 
scription we refer the reader to, for example, Valiant, m 
Kearns (v) and Rivest. ~s) 

One of the assumptions in PAC is the consistency of 
the training data, which stipulates the following sce- 
nario for the generation of the training data: each time 
the learning algorithm requests a training example 
from an oracle, the latter outputs a vector ~" which is 
selected from the domain using an unknown prob- 
ability measure; together with this it outputs t(2") 
which is the value of the unknown target concept. In 
addition it is assumed that t 0 belongs to the concept 
class c~. The goal in the PAC model is to construct a 
learning algorithm that inputs these samples of the 
target function (i.e. supervised learning), and outputs 
a concept function [the hypothesis h0] with small 
discrepancies from tO [true error rate ~(h)]. One 
possibility is to estimate the error rate from the se- 
quence of training data. The estimate is called the 
empirical error rate [~(h)]. Since the empirical error 
rate of the target concept must be equal to zero, one 
strategy for constructing learning algorithms is to 
return any concept h(~') that has a zero empirical error 
rate. This type of algorithm is called consistent algorithm. 
In case the algorithm runs in polynomial time (in the 
number of training data), it has a special name: poly- 
hy-fi (for polynomial hypothesis finder). The following 
proposition shows that by using enough data, any 
consistent algorithm can be used as learning algorithm 
for cg while meeting the PAC requirement. 

Proposition 1. [Blumer et alJ *)] Let c~ be a nontrivial, 
well-behaved* concept class. If the Vapnik-Cherve- 
nenkis dimension of cg is VC(Cg) < ~ ,  then for 0 < e, 
c5 < 1, and training sample size at least 

max (~  log2 ~, 8 VC(~) log2 ~ ) ,  (16) 

then with probability _> 1 -  6, any consistent algo- 
rithm will return a hypothesis h(Z) with true error rate 
~(h) _< e. 

The Vapnik-Chervonenkis (VC) dimension of a con- 
cept class cg is the size of the largest finite subset S of 
the domain X which can be labeled in all possible ways 

* A concept class is trivial if it has only one concept or it 
has two disjoint concepts such that c 1 uea =X.  The well- 
behavedness conditions are some measurability conditions 
on the functions, it is detailed in Appendix A of Blumer 
et al. (4) 
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using concepts in c~ (S is then said to be shattered by 
cg). A formal definition of this parameter is discussed 
in the same paper by Blumer etal. ~ From (16), the 
number  of training data required is polynomial in d, 
l/e, and 1/6 if the VC dimension is polynomial in the 
dimension d. Hence, using this technique, the proof of 
learnability of cg can be divided into two steps: 

(1) show that the VC dimension of C~ is polynomial 
in d; 

(2) find a poly-hy-fi for cg. 

We follow this approach in this paper to show the 
(~ min, (~ max and learnability of the classes d a a (~ k - rain max" 

3.2. Learnability of thresholded monotone minimum 
functions 

It turns out the learnability of cg~,~ and (~k rain max 

depend on that of the thresholded monotone mini- 
mum functions. Therefore in this section we shall first 
discuss the results for cgal, in more detail. The theor- 
ems are motivated by the geometry of the thresholded 
monotone  min imum function which we discussed in 
Section 2.2. 

3.2.1. VC-dimension of the thresholded monotone 
minimum functions. In this section, we show that 
VC(Cff~i,) = d by providing upper and lower bound  of 
vc(~:~,.). 

To find the upper bound,  we shall prove that no sets 
of > d  elements in [0, 1] d can be shattered by (da~,. In 
other words, if ISI > d, then we cannot  label the mem- 
bers of S in all 2 Isl possible ways by using solely thres- 
holded monotone  min imum functions. This result de- 
pends on Lemma 1, which restricts the possible choices 
of S that can be shattered by c#,,~,. Throughout  this 
paper, we use the symbol Xk to denote the k-th co- 
ordinate of a general vector ~. 

Lemma 1. Let S be a set of points in [0, 1] a. 

V y ~ S, 3 c() E ~g~i, such that { y } is labeled negative 
and S \ { y }  is labeled positive 

if and only if 

Vy~eS, 3acoordinateindexksuchthatyk < A w k. 
,~s',,{y} 

Proof. ~ :  Assuming the second condition holds, we only 
have to demonstrate IS[ thresholded min imum func- 
tions that perform the IsI partitionings as specified. For  
each point yES,  one possibility is: 

P ( A  xi>_O) 
ie{k} 

where 0 - 

~ : C o n s i d e r  the point y~. If y"is labeled negative by 
some m o n o t o n e  thresholded  m i n i m u m  func t ion  
P( A i~1xi -> 0) while S \ { y }  is labeled positive, we must 
have the following inequalities: 

A y~<O< A wi 
i~l ~eS \  {~},i~l 

Suppose Yk = A i~tYi then, 

yk = A y i<ON A win  A w k 
i~l ~¢~S',,{ ~},iel "~S'\ (~} 

which proves the required condition. [] 

Using this lemma, we can show that no sets of 
size > d can be shattered. This fact relies on a proof by 
contradiction presented in Theorem 2. 

Theorem 2. No set of m > d + 1 points in [0, 1] d can 
be shattered d by cgmi,, i.e. VC(C~di,) <_ d. 

Proof. Let S be a set of m >_d ÷ 1 points in the d- 
dimensional unit  hypercube. Suppose the set can be 
shattered, there must be m concept functions, each 
labeling only one of the m points negative. 

Since m_> d + 1, and each of the point in S must 
satisfy the condition stated in Lemma 1, there must be 
two distinct vectors ~ , y ~ S  and a coordinate axis k 
such that 

X k < A Wk <-- Yk 

The first inequality follows from Lemma 1 while the 
second is a consequence of ~" e S \  {Y }. By exchanging 
the role of 2" and y" in the above derivation, we get both 
Xk < Yk a n d  Yk "< Xk, a contradiction. [] 

Turning  to the lower bound, we construct sets of d 
elements in [0, 1] d that can be shattered by e (~ min" 

Theorem 3. There exists a set ofd points in [0, 1] d that 
is shattered by C~min,d i.e." VC(C~din) >__ d. 

Proof. The following set is shattered by cgai,: 

s = {~-1 . . . . .  ~-~} 

j 'a if iCk, 

Z, if i=k,  

where x~ denotes the k-th coordinate of the i-th vector 
in S. In fact, to label only {xJlj~T}, T=  {1 . . . . .  d} 
negative, use 

j eT  - -  

To label all of them positive, use 

It follows immediately from Theorems 2 and 3 that the 
VC dimension of cgdi, is d. 

3.3. PoIy-hy-fi for c~ai, 

The symbols used in this section are listed below: 

[~'(n),/(n)] = a training sample, with Z(n) being the 
input vector and l(n) the label, 

(x" +, 1) = a general positive training data, 

(~" - ,  0) = a general negative training data, 
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xc(n) = the c-th coordinate of the vector 2.(n) 

x + -- the c-th coordinate of the vector Y +, 

x [  = the c-th coordinate of the vector ~ - ,  

N = total number  of training data, 

Under  the PAC learning model, the labels are assumed 
to be generated by a target function in the concept 
class, i.e. l(n) = t[2.(n)], t ( ) E ( f f ~ i n  . 

In the first step of the algorithm, d threshold esti- 
mates 0 l, 1 _< I _< d are produced. The l-th estimate is 
calculated by taking the min imum of the/ - th  coordi- 
nate of all the positive training vectors. Since all the 
positive training data are labeled positive by the un- 
known target function t(2.) = P( A i~1x i >__ 0), the value 
A z~4  is a good estimate for the actual threshold 0. 
The immediate question is how to find the coordinate 
indices I. 

In the second step, the algorithm uses these d esti- 
mates to generate d thresholded monotone  min imum 
functions hi(2.) = P( A i~,,xi -> 01). The coordinate list 
I z is initialized to be {1 . . . .  , d} for all values of/. Denote 
J = {I~: 1 _< l_< d}. Then, the algorithm eliminates 
from Iz all coordinates c such that 32.+,x~ + < 01. The 
rationale for this step comes from the threshold homo- 
morphism property [equation (4)] 

P (  A x~ >- O,) = l~ P(xi >_ O,). 
i ~ l t  i ~ l t  

If there is an index cEI~ such that x~ + < 0~, the positive 
data will be labeled negative. Therefore, the variable c 
should be removed from 1~. If an I~ becomes empty 
after this step, it is removed 3 and therefore the corre- 
sponding concept hz is removed from further consider- 
ation. 

In the final step, h~0 is eliminated if it is inconsistent 
with any negative training data. Therefore, the remain- 
ing thresholded monotone  min imum functions are 
consistent with all the training data. One of them is re- 
turned as the hypothesis. 

Before we present the correctness proof, we shall 
show that the algorithm is indeed polynomial  time. We 
assume that comparison requires unit time. The first 
step takes at most Nd comparisons (there are at most 
N positive training data, each one requires d compar- 
isons). The next one requires at most Nd 2 comparisons 
(there are at most d indices lists I~, and each generates 
at most d comparisons for each positive training data.) 
The final one also takes Nd z comparisons with the 
same reasoning. Total number  of comparisons is 

Nd 2 + Nd 2 + Nd = O(Nde), 

which is polynomial in the number  of training data and 
the dimension d. Since N is polynomial in d, 1/e and 
1/6, this consistent hypothesis runs in time polynomial 
in these variables too. Therefore, the PAC condition 
is met. 

Theorem 4 asserts the correctness of the algorithm. 

Theorem 4. The algorithm presented in this section 
always returns a thresholded monotone minimum func- 
tion that is consistent with all the training data. 

Proof. It is obvious that the hypothesis returned by 
this algorithm is consistent with all the training data. 
We only have to show that after the last step, J is not 
empty. 

Suppose the target function has the functional form 

t(2.)=P(Ai~,x~>__0). 

In the first step, one of the estimates 0z must be equal to 

- - +  i e l  " ~ i e l  

Denote the coordinate list corresponding to this thres- 
hold value as L After the second step [ is not empty, 
and will not  be eliminated from J .  Moreover, the 
variables present in I are not  removed, i.e. 1 _c ~'. This 
fact is easy to show using the definition of 0. Finally, 
/ i s  not removed from J in the last step. To show this, 
observe that 

O_>0 
and hence for any negative training data ~ ' -  there is a 
coordinate c e I such that 

x2 <O<_O 

because the 2" must be labeled negative by the target 
concept. Using the fact that I __ I, it is obvious that the 

^ A 

hypothesis corresponding to 0, I must be labeled nega- 
tive for any negative training data. [] 

It is important  to note that we have not assumed the 
independence of the input variables {xl , . . .  , xa}. They 
can in fact be functions of each other. The only as- 
sumption made is that the target function takes the 
form ofa  thresholded monotone min imum function in 
these variables. This observation is important  especi- 
ally in Section 3.5, where the input variables for the 
poly-hy-fi are functionally related. 

3.4. Learnability of thresholded monotone maximum 
functions 

All the results in the previous section can be trans- 
cribed to apply to g~a:, by using the duality relation 
between thresholded monotone  maximum and thre- 
sholded monotone min imum functions: 

=P(Vxi>i~l 0). (17) 

The first equality is derived from the relation v ixi = 
1 - /x i(1 - xi). The leftmost function resembles a com- 
plemented thresholded monotone min imum function 
of complemented inputs, with the exception of the 
definition of the thresholding (>  0 instead of _> 0). It 
is easy to show that the results in Section 3.2 for 
P(/x ix i > O) also hold for P(A ixi > 0) upon the re- 
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placement of _> by > .  Therefore to convert  the results 
for (g~i, to apply to c g ~ ,  we use the following substitu- 
tions: 

• Replace minimum by maximum and vice versa; 
• Replace "positive" by "negative" and vice versa. 
• Replace inputs with complemented values. 

In the following, we provide a summary of the theoreti- 
cal results for c g ~ .  The proofs are omitted and we 
refer the reader to Yang and Maragos (19) for details. 

Lemma 2. Let S be a set of points in [0, 1] a, 

Vy~eS, 3ceCg~x such that {y'} is labeled 

positive and S \ { ~ }  is labeled negative 

if and only if 

V~" e S, 3 a coordinate index k such that Yk > V 
w~S',, ff} 

Wk 

Theorem 5. No  set o fn  >_ d + 1 points in [0, 1] n can be 
shattered by e ..... i.e. VC(Cg~x) <_ d. 

Theorem 6. There exists a set of d elements which is 
. . . .  i.e. VC(C-K~m~) > d. shattered by e 

Combining the two theorems, we immediately find 
that VC(Cg~,~) = d. 

Turning to the poly-hy-fi, we can use the threshold 
homomorph i sm and the duality between Boolean 
A N D / O R  to transform the poly-hy-fi for ~ ,  to one 
for cg~,~. In the general discussion in Section 3.3, swap 
the words "pos i t ive" /"nega t ive"  and " m i n i m u m " /  
"maximum", and replace "conjunction" by "disjunction" 
and "x + < 0k" with " x [  >__ 0k". The basic operations in 
this algorithm are the same as its C~dm~, counterpart,  
so the computat ional  complexity remains polynomial  
[0 (nd 2)]. The correctness proof  in Section 3.3 can also 
be adapted using duality. 

3.5. Learnability of thresholded k-min-max functions 

A general thresholded k-min max function has the 
form P( V ~T~ _> 0), with T~ denoting a min term of size 
at most k (i.e. a minimum function with at most k 
literals in its argument), This form is very suggestive 
of the connection between thresholded k-min max 
function and thresholded monotone  maximum func- 
tion: the k -min -max  function ( V ~T,) is a maximum of 
the uncomplemented rain terms T~. Using this ob- 
servation, the evaluation of a thresholded k- ra in-max 
function can be broken up into two p a r t s - - t h e  first 
step calculates the values of all min terms with size <_ k. 
This can be considered a remappin9 of the input vari- 
ables 2" into the set o fmin  terms R = {r, = A iel,lll <_ kli} • 
The rain terms T, will be elements of R. These are the 
dependent variables of the thresholded mono tone  
maximum function that is evaluated in the second step: 
P( V (nlr - r~)rn ~___ 0). Therefore, any thresholded k-min-  
max function is equivalent to a thresholded monotone  

maximum function in a higher dimensional space. In 
other words, we establish a mapping between the class 
~_,,~ . . . .  and a class of thresholded maximum func- 
tions with a larger number of input variables ( ~ / ) .  

To illustrate the remapping idea, we shall use the 
following thresholded ra in-max function 

P(xl v (x'2/~ x3) _> 0). (18) 

This function belongs to c £ 3  . . . .  i.e. the class of 
thresholded ra in-max functions with three input vari- 
ables and at most two literals in each of the min term. 
Following the remapping scheme, we introduce a set 
of new variables r, which are rain terms of xl ,  x2, x3 
with at most two literals. The new variables are listed 
below. 

r 1 ~ X l ,  r2  ~ x2 ,  r3  ~ x3 ,  

r 4 = X'l, r 5 = x~ ,  r 6 = x ; ,  

r 7 = x 1 A x2 ,  r 8 = x 1 A X3, r 9 ~ x 2 A X3, 

r l o =  Xrl A X2, r l l =  X 1 A  Xr2, r 1 2 =  xrl AXe2, 

r 1 3 = X i  A X 3 ,  r 1 4 = x t  AX'3,  r l s = x l  AX'3,  

r l 6 = X i A X 3 ,  r l v = X  2 A X ; ,  r l s - = X I A X ; ,  

r 1 9 = x  1 A X ' b  r 2 0 = x  2 A X e ,  r 2 1 = x  3 A X e .  

Exact numbering of the new variables is irrelevant 
as long as all the possible rain terms of size _< 2 
are present. Note  that the variables r19 through r21 
are formed by taking the min imum of a variable 
with its complement. This is because the expression 
P(xi/x xl >- O) is not  always equal to 0. The second step 
in the process entails the introduction of a thresholded 
monotone  maximum function that uses the r,'s as 
input. For  the thresholded function in (18), the new 
funct ion is P( V ie{1,16}ri >_ 0). Other  funct ions  in 
~ ~-,,i . . . .  can be expressed as a thresholded monotone  
maximum function o fF .  For  example, P(((x'l/x xz) v 
(x'x/x x; ) )  > 0) can be expressed as V(rlo v r15 > 0). 

Denote  the number of variables in the remapped 
vector ~" by d' = [R[. (In the example the dimension of 
the new vector is d" = 18.) The parameter d' is a func- 
tion of d and k. By a simple combinatorial  argument, 
one can easily show that the functional form is: 

d ' = ( 2 d ) +  ...+(2d)<_k(2d)k<_(2d)(k+l' (19) 

where = is the combination. The upper 
q[(p-q)[ 

bound on d' is polynomial  in the parameter  d when k 
is fixed. 

Using the remapping idea, the domain of the k-min- 
max functions X can be mapped to a subset of a d' 
dimensional space X'. Also, any set of points S c X can 
be mapped to S' c X'. F rom this observation, we can 
easily prove the following theorem. 

Theorem 7. VC(Cg~.=i ....... ) <_ VC(Cg~). 

Proof. Consider a set S c X that is shattered by 
d Cgk-,,i . . . . .  . The size of S is VC(Cg~_mi . . . .  ). Using the 
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remapping procedure, this set can be mapped to S' 
X '  which has the same number  of elements. Moreover, 
the output  value of thresholded k-rain max function 
c(~') is the same as that of the thresholded monotone  
maximum function e'(T) after the remapping. There- 
fore, if the set S is shattered by a collection of concepts 
{e(x')~cgka-mi . . . .  }, the set S' will also be shattered by 
the remapped functions {c'(~')eg~a~}. Since the set S' 
is shattered by cg~,~, the VC dimension of this concept 
class is bounded by the inequality 

V C ( ( ~ a x )  ~ IS'[ : VC((~-mi  . . . . .  ) 
[] 

From Section 3.4, the VC dimension of Cg~a~ is d. 
Also, using the upper bound  on d' in equation (19), we 
get the following bound on VC(Cd~.,,i . . . .  ). 

Corollary 1. VC(~a_mi . . . . .  ) _< (2d)(k+ 2). 

Turning  to the learning algorithm for Cg~_m~ . . . .  we 
found that any thresholded k -min-max  function be- 
comes a thresholded monotone  maximum function in 
the new variables r i. Moreover, there are only a poly- 
nomial number  of remapped variables ri. Therefore, 
the sequence of training data (Z j, 1 j) can first be map- 
ped into the new coordinates (7  J, lJ). The result is fed 
to the poly-hy-fi for cgda: ,. It will return a hypothesis 
in the remapped variable, which can be converted back 
to a thresholded k -min-max  function easily by replac- 
ing the coordinates r~ by the corresponding min imum 
function on Z. Assuming unit time for computing a 
comparison, the amount  of time required by the re- 
mapping step is at most ndd '<  nd(2d) ~k+ 1), Therefore 
the total time required by the algorithm is 

ndd' + ( n d ' +  nd '2) = ( d + 1)nd' + nd '2 _<_< n { ( d + 1)(2d) k+l 

+ (2d)2~+ 2)} = O(n(2d)2tk~ 1)). 

3.6. Difficulty o f  learning in the presence o f  noise 

The proofs for learnability in the previous sections 
hinges on the assumption that the training data can be 
labeled without error by at least one function within 
the concept class. Despite the intellectual clarity of the 
PAC model, for practical applications we think this 
condit ion to be too stringent, which led us to investi- 
gate the possibility of finding polynomial time efficient 
learning algorithms that can operate without this as- 
sumption of consistency. In this more general setting, 
it is still possible to obtain results that resemble the 
PAC ones. Indeed, learnability of a concept class still 
depends on the VC-dimension being po lynomia l  
Blumer et al3 2°) This will provide a polynomial bound 
on the number  of training vectors. As for the learning 
algorithm, instead of returning a hypothesis that has 
zero training error rate, it should find a concept that 
minimizes the training error. 

Therefore, to show that Cgaml, is learnable under this 
general learning model, the natural  step is to devise 
minimum-error  algorithm for the thresholded m i n -  

max functions. Unfortunately,  it turns out that for the 
thresholded monotone  min imum functions this pro- 
blem is NP-complete: one can show that the Min imum 
Disjunctive Normal Form problem (21) is a restriction of 
minimum-error  algorithm for ~dmin_ma x. 

In the rest of the paper, we shall describe a LMS 
(Least Mean Square) algorithm for training thresh- 
olded rain max functions. The algorithm is a gradient 
descent based approach and therefore not  guaranteed 
to find the best classifier. Nonetheless experience 
shows that it performs quite well. 

4. LMS ALGORITHM FOR TRAINING M I N - M A X  
CLASSIFIERS 

We start describing the LMS algorithm ~22) on a 
general function. If Z(t) is the input vector to the 
classifier at discrete time t = 1, 2, 3 , . . . ,  then the output  
is z ( t ) =  F(Z(t);~(t)) where ~'(t) is a vector of para- 
meters that together with F(.) determine the i npu t -  
output  rule of the classifier. One is usually interested 
in minimizing the mean-square error (MSE) of the 
output  z(n) and a desired process d(n), 

~ (t) = E [  (z(t) -- d(t))2]. 

Since we are dealing with binary functions z(t), d ( t ) z  
{0, 1}, the mean square error is identical to the prob- 
ability of error of the classifier. The mean-square error 
is minimized using a gradient descent approach. At 
each iterative step, the internal parameters ~'(t) are 
changed along the direction so as to produce the 
largest decrease in the MSE. This is achieved using the 
iterative equation 

F(t  + 1) =fi(t)  - pV~g(t). (20) 

The gradient symbol V ~ ( t )  is equal to (Og /@i , . . .  , 
Og/@a ) if ~" = (PI,P2 . . . . .  Pal). The parameter p is the 
convergence factor and is used to control the con- 
vergence rate of the system. The main simplification of 
the LMS approach is the replacement of the mean- 
square error by the instantaneous error e(n). Therefore 
Equation (20) is approximated by 

p'(t + 1) = ~'(t) -- 2p(z(t)  -- d(t))pV~z(t)  (21) 

In this paper we shall be interested in using LMS for 
supervised training of binary valued functions (i.e., 
functions whose output  values are 0 or 1). Typically a 
set of labeled examples are used to train the classifier. 
The members of this training set are formed into a 
sequence and presented to the LMS algorithm one by 
one. The step variable n is the sample number  within 
the training data set. The desired process d(n) is the 
actual label of the samples. 

We shall state a few technical details before proceed- 
ing. In Section 3.5, we proved the learnability of the 
class of thresholded k-ra in-max functions. For  the 
LMS training scheme, it is more convenient to restrict 
instead the total number  of minima. Therefore in the 
rest of the paper we shall use the class of thresholded 
k-term-min max functions. Another detail involves 
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introducing the complemented variable x '  = 1 - x. In 
the discussion that follows, the minimum functions are 
assumed to be monotone ,  i.e. the input variables are not 
complemented. This presents no difficulty because we 
can always remap a feature vector of dimension d into 
one of dimension 2d which are composed of pairs of 
uncomplemented and complemented variables. There- 
fore from now on we shall assume this remapping is 
performed and the input variables may be comple- 
mented. 

Equation (21) requires the gradient of the function 
output with respect to the internal parameters, which 
immediately raises two questions: 

(1) How do we define the parameters for the thresh- 
olded min-max function such that we can perform 
differentiation? 

(2) Since the output of the min-max function in- 
volves nondifferentiable functions such as threshold- 
ing and minimum, how do we find (or approximate) 
the gradient of z(n)  with respect to •(n)? 

To answer the first question, we recall the functional 
form of a monotone thresholded k-term min-max 
function. If we denote the min-terms by hj and the 
rain-max function by y, then (see Fig. 2) 

h j =  i ~ j x i ,  j = l , 2 , . . . , k  

k 
y =  V h j  

2=1 

Z : { ~  0 y>O, 
y < O .  

The defining parameters include the threshold 0 and 
the k coordinate sets Ij over which the minima are 
evaluated. Since the learning algorithm employs gra- 
dient of the internal states, the states should be contin- 
uous variables. This poses no problem for the thresh- 
old 0. As for the coordinate sets 1 i, which are in- 
herently discrete variables, we adopt the approach 
suggested in Salembier. <x2) For each Ij we introduce d 

continuous real variables mu, i = 1 ... .  , d. They control 
the coordinate list in the following manner: 

• xi  is included in Ij ifm u _> 0, 
• xi is excluded from Ij if m u < 0. 

The parameters 0 and m u are the only ones required 
to describe a thresholded monotone k-term min-max 
function. Hence, ~'(t) = (O(t), m l  1(0  . . . . .  md l ( t )  . . . . .  
mdk(t)). These parameters are also shown in Fig. 2. 
Turning to the second question, (12) provides implici t  
formulae for the minimum and maximum functions. 
Using these one can find a reasonable approximation 
to the gradients. 

We are now in a position to find the gradients 
required in Equation (21). The derivative with respect 
to 0 is easy. It follows from the definition of the thresh- 
old function 

z = U2(Y  - O) (22) 

where U20 is the unit step function with two  output 
values defined as 

U2(X)~--- { ;  ifif X<0.X-->0' 

A strict forward calculation yields the derivative, 

8z 
~?~ = - 6 ( y  - 0).  (23 )  

For practical purposes the delta function in the above 
equation is approximated using a finite impulse shown 
in Fig. 3. 

The parameter fl controls the width of the pulse. 
Using this approximation, one derives the approxi- 
mate derivatives 

 Z={o 
80 otherwise. 

(24 )  

To calculate the derivatives with respect to the para- 

Minima 

Z 

Binary 
output 

I0 _ a 
Threshold Maximum ~ ~  

X 1 

X 
d 

Input 
values 

Fig. 2. The connections between the different modules within a thresholded min-max function. 
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1/[3 - _ 

1/213 - _ 

-~ 0 [~ x 0 
X 

Fig. 3. Approximations to the 3(x). The one on the left is used in the update equation for 0 while the other 
is used for the maximum and minimum functions, fl is a parameter to be specified. 

meters mij, one employs the chain rule: 

dz 0z t3y 0hj 
- ( 2 5 )  

~mq c~y t~hj ~mij 

4.1. Derivative of ma'ximum 

The second term in equation (25) is the derivative of 
the output  of a maximum function with respect to one 
of its inputs. It cannot  be calculated using the explicit 
form of the maximum function. To overcome this 
difficulty, we used an implicit definition of the maxi- 
mum function 

k 
G(y, hl . . . . .  hk)= Z {Uz(y--hJ)-- 1} + G e = 0 .  

j=l 2 
(26) 

In this equation U30 denotes the unit step function 
with three output  values: 

i if x > O ,  
U3(X ) = 1 if X = 0, 

if X < 0 .  

If y is equal to the maximum value of h i . . . .  , hk, the 
summation in (26) evaluates to Ge/2, where Ge is the 
number  of inputs hj that are equal to the output  y. For  
mathematical tractability this parameter Ge is assumed 
to be constant  and independent of y and h~. To show 
(26) implies y = V k= ~hi, we note that the summation 
term increases monotonically as y increases. So there 
is only one unique value ofy  that satisfies the equality, 
and that value is the maximum of the inputs. 

To calculate the partial derivative @~Oh j, we use the 
fact that the total derivative of G0 with respect to hj 
is ident ical ly  zero. Using the implici t  func t ions  
theorem and after some simplifications, one obtains 

0G 

t~y 0hi 
- ( 2 7 )  

~h~ OG 
~y 

Using (26) the partial derivatives OG/6hj and OG/@ can 
be calculated as follows: 

t3G 
ah~ 6(y - h j) (28) 

Turning to the other derivative, we have 

c3G k 
- -  ~, 6(y - -  h t )  ( 2 9 )  

Oy t- 1 

These two equations involve the delta function. For 
our practical purposes we shall approximate them 
using the finite pulse shown on the right of Fig. 3. 
Whereupon after combining equations (27), (28) and 
(29), we get the simple update equation 

~y fN__ if O<_y-hj<_fl  

_ _  ~ 1 0 . . . x  ( 3 0 )  c~hj otherwise. 

The parameter  N,,ax is defined as 

A 
Nma x = number  o fh / s  such that y -  hj N fl (31) 

k 

= ~ U2(fl-- (y-- hi)). (32) 
j = l  

To conclude this section, we remark that the implicit 
formulation of maximum was also used in Salembier (12) 
for adaptive morphological filtering. There are some 
differences between the formulation used in the refer- 
ence from ours. First of all, we did not assume that 
Ge = 1, which is the case in. Ira) Another difference 
regards equation (30) (the update equation): in, (12) 
N,,,x is taken to be 1 (a direct result of assuming 
G e = 1); while in our case Nm~x-> 1. A direct conse- 
quence is generally slower convergence for our algor- 
ithm compared t o . / 1 2 )  We also observed about  a 5~o 
decrease in error rates by using our updated training 
equations. 
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4.2. Derivat ive  o f  min imum 

The third derivative in equation (25) now poses no 
special difficulties. The output of the j-th minimum 
function is 

h i=  min {xi} 
i,mlj~ 0 

Using the implicit formulation again, this equation can 
be reexpressed as 

L(hj, x l  . . . .  , Xd, m l j  . . . .  , me j) 

d 

= Z { g 2 ( m i j ) [ g 3 ( x i - h j ) -  1]} + g e = o ,  (33) 
i=1 2 

where L~ denotes the number of inputs x; that are equal 
to the output value hj and is assumed to be constant. 
Again the update equation is independent of this con- 
stant. Using the total derivative of L with respect to 
mij we immediately find the gradient of the output hj 
with respect to mij 

~L 

~hj _ ~mij (~(mu)[U3(x i - hj) - 1] 

gmij  OL ~d= 1 U2(rnlj)~(Xl --  h j) 

Ohj 

1 if ]rnj < fl and hj = xi 
2N~,  

(34) 
0 otherwise. 

and 

N ~i, -number  of inputs such that m~j > 0 and 

Ix ,  - h j l  <_ 
d 

= ~ U2(rnu)U2(fl -- [xl -- hjI) 
1~1 

We shall denote the training parameters for the mini- 
mum modules by #,,~, [convergence rate in equation 
(21)] and fl,,~, [approximate delta function width in 
equation (34).]* 

5. APPLICATION TO HANDWRITTEN CHARACTER 
RECOGNITION 

In this section, we shall describe the experimenta- 
tion we did on handwritten character recognition using 
the LMS algorithm described in Section 4. 

As the outputs of thresholded min max functions 
are binary valued, we applied them to the task of 
distinguishing between two types of handwritten 
digits. 

Our database consists of segmented and cleaned 

* Salembier ~12) assumed L~= 1 and hence also N,,,-,, = 1, 
similar to the situation for maximum. Since Nm~, >_ 1, our 
update equation will generally converge slower. We also 
found that our equations produced about a 5% decrease in 
error rates. 

t This database was supplied by Dan Bloomberg of Xerox 
PARC. 

handwritten digits, t Samples of digits we used are 
shown in Fig. 4. The size of each digit is around 50 x 
50 pixels. Three different sets of data were used in our 
experiments. In increasing order of difficulty: the first 
set consisted of O's and l's, the second set O's and 6's, 
and the third 6's and 8's. The training set consists of 
600 samples of each type giving a total of 1200 digits, 
while the test set consists of 200 samples of each for a 
total of 400 test digits. 

5.1. Feature  ex t rac t ion  

The two types of features that we used are the 
morphological shape-size histograms and Fourier de- 
scriptors, described respectively in sections 5.1.1 and 
5.1.2. Fourier descriptors have been used in character 
recognition before [for example, see~23,24~]. Ideas simi- 
lar to the shape-size histogram was employed in Trenkle 
et al/25) The feature they employed is based on size 
distribution of the x or y border signals of the char- 
acter. However, our feature is based on multiscale 
smoothing of the two dimensional image. 

5.1.1. Morpho log ica l  shape-s ize  histogram, A cen- 
tral theme in object recognition is the problem of 
multiscale shape representation. In morphological image 
analysis, an important tool for multiscale shape re- 
presentation is the shape-size histogram tl°,z6) [also 
called "pattern spectrum"(26)]. The direct application 
of this shape descriptor to character images is not, 
however, desirable: experience shows that the shape- 
size histogram is sensitive to the thickness of the stroke, 
the actual size of the image, and also to rotation. 
Therefore, the normalization procedure described in 
references (27) and (28) was employed to reduce the 
fluctuation in feature values due to these factors. It 
includes the following steps: 

(1) The character image is dilated + by a 3 x 3 pixel 
square to fill up small gaps. The image is then thinned 
using a procedure described in Bloomberg. 129~ The 
basic thinning operation in the algorithm is 

I ~ - ~ I \  U ((I O A i ) c ~ ( l C O B i ) )  • 
i 

Basically, the set difference (\) removes the boundary 
of the character while still preserving four connectivity 
of the foreground. For details about the structuring 
elements S~ = (A~, Bi) we employed. (27t In each step of 
the thinning algorithm, the image is thinned using Si 
and their rotated versions. This is repeated under con- 
vergence (i.e. no change in the image). 

++ Representing the foreground of a binary image by a set I 
(and its background by E), then three basic morphological 
operators are: 

erosion: 1 0 B  = {z:z + bEI  for all beB} ,  

dilation: 1 0 B  = {x + b : x E I  and b~B},  

closing: I e B = (I ~ B) G B. 

The set B in the above expressions is called the structuring 
element. 
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Fig. 4. Sample data from the handwritten database. (a) A collection of O's. (b) A collection of l's. (c) A 
collection of 6's. (d) A collection of 8's. 

(2) Next  we calculate the area functions A[I  enB]  
for n = 0 . . . .  , Nb, where 

n B = ~  f o r n > l ;  0B={(0 ,0 )}  
n 

are multiscale dilations of a unit-size convex set B. For  
discretized images, the area count  is equated to the 
number  of pixels. The maximum size N b is determined 
by the relative size of the image with respect to the 
structuring element B: suppose the dimension of the 
bounding box of the image I is i~, x ih, and that for the 
structuring element b w x bh; then 

Nb = max (iw -- b~, i h - bh). 

In order to fit this information into a feature vector of 
size M, we resampled the area function: 

A ' ( m ) = A ( l . [ m ~ b ~ B ) ,  f o r m = 0  . . . . .  M (35) 

where the floor function ( [ e J )  equals the largest in- 
teger _< its argument. 

(3) Finally, the normalized shape-size histogram is 
calculated via the following equations: 

1 
NSH'r(m, B) = ~ ( A ' ( m  + 1) -- A'(m)), 

f o r m = 0  . . . . .  M - - 1  (36) 

The quanti ty J#  is the area of the maximally closed 
image. 

Examples of normalized shape-size histograms are 
shown in Fig. 5. 

If insensitivity to rotat ion is also desired, one can 
use the radial size histogram (called "Oriented Pattern 
Spectrum"). (26) It replaces the closing by a 2-D element 
B with an intersection of closings by the four directed 
vectors { - % / ,  T, \ }. In finding the parameter  N b (the 
maximum closing size), the bounding box is allowed a 
45 ° shear in either directions. This feature was also 
employed in our experiments. Examples of this feature 
are also shown in Fig. 5. 
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Fig. 5. Samples of handwritten digits together with morphological shape-size histograms features extracted 
from them. The center column are normalized radial size histograms, while the rightmost column are 

normalized shape-size histograms calculated using a 2 x 2 square. 

5.1.2. Fourier descriptors. We employed the Four- 
ier descriptor discussed in reference (30). It provides a 
representation for the outer boundary of the character 
image. This shape descriptor is independent of transla- 
tion and rotation of the curve. To calculate the Fourier 
descriptor we first preprocessed the image using the 
same procedure (gap filling and thinning) as in Section 
5.1.1. Then the boundary of the discretized image is 
traced using a standard eight-connectivity chain code 
algorithm. <al) The output of this algorithm describes 

an m-sided polygon with sides of length 1 or x~,:from 
which the following Fourier coefficients are calculated: 

Ic,]= • A(bjexp~,l~L )1, f o r n = l , 2  ... .  
j = l  

(37) 

J 
l j=  ~ Alk (38) 

k = l  

In the above equations A~bj denotes the amount of 
change in direction at vertex j as we transverse the 
chain code; and Alk denotes the length of the edge 
between vertices k - 1 and k (vertex m is the same as 
vertex 0). The total length of the polygon is L. We 
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remark that the amplitude ]cn] is also independent of 
the initial vertex of the polygon. 

Since the input  to the threshold min max functions 
has to be restricted to a range of [0, 1], the coefficients 
Ic,I are divided by the factor (Y~7-1 ]A~j]/21r). It is easy 
to see that the normalized coefficients FD(n) are within 
the desired range: 

expl-'T) I 
0 <_ FD(n) = <_ 1. 

n ~2~a= 1 IAq~jl 
Examples of the Fourier  descriptors are shown in 
Fig. 6. 

5.2. Experimental results 

In this section we shall provide the results of apply- 
ing the LMS training algorithm described in Section 4. 

In our experiments, we used the LMS algorithm in 
a "per-sample" mode operation. This means that train- 
ing and testing are separated into two distinct stages. 
During each iteration of training stage, the defining 
parameters in the m i n - m a x  function are updated with 
the LMS rule after presentation of each training vec- 
tor. After the entire training data set is stepped through, 
the error rate of the current classifier is calculated. In 
our particular implementation, the training program 
performs a fixed number  of scans through the training 
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Fig. 6. Samples of handwritten digits together with Fourier descriptors calculated using the outermost 
boundary found by an eight connectivity chain code. See Section 5 for more details of these features. 
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set (200 is the value we used), and returns the classifier 
that achieved the lowest error rate within the 200 
scans. This classifier is then used to calculate the error 
rate on the test rate. For  each training parameter 
setting, the training program was run on 15 different 
initial settings of mij which are generated randomly. 
The error rates reported are averaged over settings 
that achieved the five lowest test error figures. The mij 
parameters for the minimum gates were initialized 
using a random number  generator. We found that 
convergence depended quite critically on the initial 
value of the threshold 0 and therefore it is not  ran- 
domly generated. It is initially set to some value close 
to 0.5, since the means of the data are shifted to 0.5. 

In the first set of experiments, we compared the 
performance of the ra in-max classifiers to feed-for- 
ward preceptron-based neural networks trained with 
back propagation.  (31) Three different sets of data were 
used. In increasing order of difficulty: the first set 
consisted of O's and l's, the second set O's and 6's, and 
the third 6's and 8's. For  each digit we extracted 20 
components  of shape-size his togram and 20 com- 
ponents of  normalized Fourier  descriptors forming 
feature vectors of 40 components.  Two types of shape- 
size histograms were used in the experiments. The first 
one is the normalized radial size histograms. The other 
kind is NSH'~(m, B) (see Section 5.1.1) with the structur- 
ing element B a 2 x 2 square. After the features were 
extracted we shifted the mean for each component  to 
0.5. This preprocessing step was needed because the 
values of the features tend to have small values < 0.5 
and the complemented variables will not be used other- 
wise. The shifted values were then rescaled in order to 
preserve the range [0, 1]. Typical training parameter 
setting is flo = O. 1, #0 = 1 O- 5, fl,,ax = 1 O- 3, Pmi~ = 1 O- 6 
and fl,~,~ = 10 -4. 

Turning to the neural networks; only two layer nets 
were used in order to provide fair comparison with the 
min-max  classifiers (the maximum and minimum gates 
correspond to different layers in a neural network). 
There was one node in the output  l a y e r - - a n  output  

value of _> 0.9 is treated as a positive sample while 
those < 0.1 negatives332) Again we used fifteen initial 
conditions for the back propagat ion algorithm, and re- 
ported averages of errors from the five best runs. A 
"per-sample" update scheme was used (the weights and 
thresholds are updated after presentation of each train- 
ing vector). Finally, a momentum term was included 
in the update equation. Typical training parameters 
are # (convergence ra te )=  0.7 and momentum 0.2. 
Section 5.2.1 contains the results for the first set of 
experiments. 

In the second set of experiments, we investigated the 
importance of each type of feature for good classifica- 
tion. Three different sets of feature vectors were extrac- 
ted from the database consisting of O's and 6's. They 
are 

(1) 20 components of normalized radial size histo- 
gram plus 20 components  of normalized Fourier  de- 
scriptors. (Same as previous experiments.) 

(2) 40 components  of normalized radial size histo- 
gram. 

(3) 40 components  of normalized Fourier  descrip- 
tors. 

These features were also preprocessed (shifted and 
scaled) as described previously. The results are detailed 
in Section 5.2.2. 

5.2.1. Comparison  o f  m i n - m a x  classifier wi th  neural 
networks .  The results for O's and l 's are shown in 
Table 1. The results generated using normalized radial 
size histogram with Fourier  descriptors are shown in 
the top two tables. Typical error rates for the ra in-max 
classifiers are 0.083~o on the training data and 0.25~o 
on the test data, which amounts  to 1 error in the 
training data set and 1 in the test set. The neural 
networks were able to achieve no error on the test data 
set. These results are very encouranging, the ra in-max 
classifiers achieved error rates which are essentially the 
same as that generated by the neural networks. The 
error rates deteriorated if the radial histograms are 

Table 1. Results for 0 1 classification problem employing both shape-size histograms and Fourier descriptors 

Distinguishing O's and l's 
Normalized radial size histograms and Fourier descriptors 

Min-max Neural network 
No. of ~o error Vo error }/o error ~o error 
minima (train) (test) Network (train) (test) 

1 0.083 0.25 1, 1 0.083 0 
3 0.083 0.25 3, 1 0.083 0 
5 0.1 0.25 5, 1 0.083 0 
7 0.083 0.25 7, 1 0.083 0 

Normalized shape-size histograms with 2 x 2 square and Fourier descriptors 

1 3.867 2.6 1, 1 0.633 1.2 
3 1.9 2.8 3, 1 0.633 0.85 
5 1.083 3 5, 1 0.567 0.8 
7 1.733 3 7,1 0.533 0.55 

The top two tables are generated using normalized radial histograms and Fourier descriptors, while the lower two using 
normalized shape-size histogram with 2 x 2 square and Fourier descriptors. 
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replaced by the 2 × 2 square histograms. This is be- 
cause the 2 x 2 square histogram is detecting the notch 
in the digits written like 1. 

Besides comparing the error rates, another attribute 
that is of interest is the speed of convergence of the 
training algorithms. Typical convergence plots of the 

LMS algorithm and the back propagation algorithm 
on data set (I) are shown in Fig. 7. The graphs show 
the error rate on the training data set as a function of 
the number of scans. (The error rate is computed after 
each scan of the entire training sequence.) The plots 
terminate after the minimum error rate is found. Judg- 
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ing from these plots, we see tha t  a clear advan tage  of 
the LMS a lgor i thm over  the back  p ropaga t ion  algo- 
r i thm is the speed of convergence.  Typically only 40 
scans is required befoge the m i n i m u m  t ra in ing  error  is 
reached whereas for the Back P r opaga t i on  ten t imes 
more  scans are required. Ano the r  advan tage  we found 
in runn ing  the p rograms  is tha t  the m i n - m a x  classifier 
required less execut ion time: comput ing  a m i n - m a x  
function requires only binary comparisons;  while neural  
ne tworks  require the calculat ing the computa t iona l  
costly mult ipl icat ions and  the exponent ia l  functions.  

The results for the second set of experiments  (0's and  
6's) are shown in Table  2. Fo r  the r a i n - m a x  classifiers 
the test er ror  rates were a r o u n d  1~,  smaller by 0 .5~  
of tha t  a t ta ined  by neural  networks.  In Table  2(b), the 
normal ized  radial  size h is tograms were replaced by 

2 x 2 square histograms. The error  rates have increased 
by using the lat ter  set of features. Not ice  also tha t  the 
m i n - m a x  classifiers have lower t ra in ing and  test er ror  
rates t han  the neural  networks.  

Finally,  the results for the th i rd  set of experiments  
(6's and  8's) are shown in Table  3. In the top  two tables 
the features are normal ized  radial  size h is tograms with 
Four ie r  descriptors.  The best test er ror  rates for m i n -  
max classifiers are a r o u n d  16~o, smaller  by 4 ~  of the 
best value a t ta ined  by neural  networks.  In Table  3(b) 
the radial  h i s tograms were replaced with 2 x 2 square  
his tograms,  result ing in abou t  50~o drop  in bo th  train- 
ing and  test e r ror  rates. 

5.2.2. Comparison of different features. In this set of 
experiments  we compared  the er ror  rates ob ta ined  

Table 2. Results for 0-6 classification problem employing both shape-size histograms and Fourier descriptors 

Distinguishing O's and 6's 
Normalized radial size histograms and Fourier descriptors 

No. of 
minima 

1 
3 
5 
7 

Min-max Neural network 
~o error ~o error ~ error ~ error 
(train) (test) Network (train) (test) 

1.783 1,35 1, 1 1.517 1.5 
2.283 1.15 3,1 1.567 1.5 
2.25 1 5, 1 1.517 1.5 
2.267 0.85 7, 1 1.517 1.5 

Normalized shape-size histograms with 2 x 2 square and Fourier descriptors 

3.35 2,7 1,1 4.6 2.65 
3.35 1,65 3,1 4.9 2.65 
3.233 1.65 5, 1 4.917 2.35 
3.083 1.9 7, 1 4.65 2.1 

Table 3. Results for 6 8 classification problem employing both shape-size histograms and Fourier descriptors 

Distinguishing 6's and 8's 
Normalized radial size histograms and Fourier descriptors 

No. of 
minima 

1 
3 
5 
7 

Min-max Neural network 
error Vo error ~ error ~ error 

(train) (test) Network (train) (test) 

16.767 17.7 1,1 49.867 49.55 
14.283 15.4 3, 1 22.517 20.5 
15.35 15.5 5,1 18.4 18.15 
15.35 16.85 7,1 19.55 18.2 

Normalized shape-size histograms with 2 x 2 square and Fourier descriptors 

8.95 11.75 1,1 19.95 17.85 
8.55 11.6 3,1 15.567 13.9 

10.233 11.55 5, 1 15.217 14.25 
11.35 11.85 7,1 15.25 13.55 

Table 4. Results for 0-6 classification problem using only normalized radial size histograms 

No. of 
minima 

Distinguishing O's and 6's (only radial size histogram) 
Min-max 

~o error ~o error 
(train) (test) Network 

error 
(train) 

Neural network 
~o error 

(test) 

1 2.283 t 1, 1 2.167 1.65 
3 2.1 2.1 3, 1 2.05 1.3 
5 1.933 2 5, 1 1.967 1.2 
7 2.067 2 7, 1 1.967 1.15 
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Table 5. Results for 0-6 classification problem using only normalized Fourier descriptors 

No. of 
minima 

Distinguishing O's and 6's (only Fourier descriptors) 
Min-max 
% error % error 
(train) (test) Network 

Neural network 
%error %error 
(train) (test) 

1 4.75 4.85 1,1 4.117 3.05 
3 3.2 2.35 3, l 3.567 3 
5 3.133 2.25 5, 1 3.333 2.4 
7 3.133 2.1 7,1 3.267 2.45 

using different sets of features. Table 4 shows the 
results for using only normalized radial size histo- 
grams while Table 5 with only Fourier  descriptors. In 
both cases the test error rates for the m i n - m a x  classif- 
iers showed approximately a factor of 2 increase in the 
error rate for the ra in -max  classifiers for using only 
one type of feature versus the using the mixed set. The 
error rates for using only shape-size histograms were 
about  the same as using just  Fourier  descriptors. In- 
creases in the error rates for the neural  networks were 
also observed. Therefore it is beneficial to include both 
types of features instead of using just one. 

6. CONCLUSION 

In conclusion, we have introduced the class of ra in- -  
max classifiers which are lattice-theoretic generaliza- 
tions of the Boolean functions. The main theoretical 
results we proved was the learnability of three sub- 
classes of these functions under the PAC model of 
machine learning. This was achieved by demonstrating 
both polynomial time learning algorithms and poly- 
nomial bound  on the number  of training samples re- 
quired. For  the practical training of ra in-max classi- 
fiers we introduced an LMS algorithm. This training 
algorithm was then applied to the problem of hand- 
written character recognition; which demonstrated very 
good performance in our experiments. Comparison 
with feed forward neural networks trained with back 
propagation highlighted the advantages of ra in-max 
classifiers trained via the LMS algorithm; which in- 
clude the simplicity of the m i n - m a x  classifiers, and the 
faster speed of convergence of the LMS training algo- 
rithm, while achieving similar (or a few times) smaller 
error rates. Both the LMS and back propagation algo- 
rithms are used in a "per-sample" update mode so 
that the comparison is made on common grounds. 
While it is possible to speed up the back propagation 
by various techniques (see, for example, Xu et al., <33)) 
most of them do rely on improving the basic gradient 
descent scheme. The same techniques can therefore 
also be applied to speed up the basic LMS algorithm 
presented in this paper. 

The experimental results on handwrit ten recogni- 
tion provides evidence on the practical utility of the 
m i n - m a x  classifier. Future  work with ra in-max clas- 
sifiers is their further development for practical use. 
First of all, practical character recognition systems 
employ rejection schemes to reduce error rate by re- 

jecting uncertain input patterns. One way to incor- 
porate rejection into the basic thresholded rain max 
function is to use two different thresholds 0upper and 
01 . . . .  ; an input vector is classified as a positive instance 
if the ra in-max function value ( f(Z))  is higher than 
Oupper negative if lower than 01 . . . .  . Otherwise it is 
rejectbd. These two values can be selected to be some 
value away from the trained threshold 0 so that a 
desired error rate is achieved, i.e. set 0uppe r = 0 + A and 
01 . . . .  = 0 - A; choose A so that a desired error rate is 
achieved. 

The next natural  step for the development of a full 
fledged character recognition system is to generalize 
the ra in-max classifiers for arbitrary number  of clas- 
ses. Work in this direction is reported in Yang, t2s) 
where a multiclass m i n - m a x  classifier is constructed 
by associating with each class in the problem the fol- 
lowing ra in-max function: 

F(~)=  V A l i +  wi, l ie{xi , -x i} .  
j iely 

An input feature vector is classified according to which 
ra in-max function has the highest output. The addi- 
tive weights (wl) and the dependent parameter list (l j) 
are trained using an LMS algorithm similar to the one 
described in Section 4. This architecture resembles a 
feedforward neural network for multiclass classifica- 
tion problems, in which one output  node is associated 
with each output  class and classification is done by 
comparing the output  at these nodes. Moreover,with 
this "winner-take-all" scheme, it is more natural  to 
incorporate a rejection criterion in the multiclass ra in-  
max classifier--the output of the min -max  functions 
can be interpreted as the probability that the input 
belongs to the corresponding classes; if the top score is 
not significantly larger than the rest then the input data 
is rejected. We note that this is the usual procedure used 
in neural networks for rejecting input data. An LMS 
algorithm was also derived or training the multiclass 
ra in-max classifier. This was applied to the classifica- 
tion of handwritten digits (all 10 classes). The multiclass 
rain max classifier was found to be able to achieve error 
rates comparable to traditional feedforward neural net- 
works. 
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