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Abstract—In this paper, we explore nonlinear methods, inspired
by the fractal theory for the analysis of the structure of music sig-
nals at multiple time scales, which is of importance both for their
modeling and for their automatic computer-based recognition. We
propose the multiscale fractal dimension (MFD) profile as a short-
time descriptor, useful to quantify the multiscale complexity and
fragmentation of the different states of the music waveform. We
have experimentally found that this descriptor can discriminate
several aspects among different music instruments, which is veri-
fied by further analysis on synthesized sinusoidal signals. We com-
pare the descriptiveness of our features against that of Mel fre-
quency cepstral coefficients (MFCCs), using both static and dy-
namic classifiers such as Gaussian mixture models (GMMs) and
hidden Markov models (HMMs). The method and features pro-
posed in this paper appear to be promising for music signal anal-
ysis, due to their capability formultiscale analysis of the signals and
their applicability in recognition, as they accomplish an error re-
duction of up to 32%.These results are quite interesting and render
the descriptor of direct applicability in large-scale music classifica-
tion tasks.

Index Terms—Fractals, multiscale analysis, music signals,
timbre classification.

I. INTRODUCTION

M USICAL content and information analysis is of impor-
tance in many different contexts and applications, as

for instance, music retrieval, audio content analysis for summa-
rization applications or audio thumbnailing, automatic music
transcription, indexing of audio and multimedia databases and
other. The above mentioned applications require robust solu-
tions to information processing problems, such as automatic
musical instrument classification and genre classification [2],
[23], [29]. Toward this goal, the development of efficient digital
signal processing methods for the analysis of the structure of
music signals and the extraction of relevant features becomes
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essential. Our paper proposes such methods and algorithms,
and investigates an alternative feature-set which quantifies
fractal-like structures in music signals at multiple time scales.
By using the proposed analysis, we seek to explore whether
these methods are capable of characterizing musical sounds
for recognition tasks and whether it is possible to relate their
properties using such measurements.
Both Plato and Aristotle, in many of their treatises, claimed

that music fell under the philosophy of “craft of representa-
tion” or otherwise mimesis. In other words, music imitates na-
ture, human emotions or even properties of certain objects. On
the other hand, Mandelbrot [16] has demonstrated how nature
contains structures (e.g., mountains, coastlines, the structures of
plants), which could be described by fractals1 and suggested that
fractal theory could be used in order to understand the harmony
of nature. Fractals can also be found in other natural processes
described by time-series measurements (i.e., noises, pitch
and loudness variations in music, demographic data and others).
He also recognized the widespread existence of in nature.
In this paper, inspired by the fact that music somehow imitates
the nature, while ideas from the fractal theory are able to de-
scribe it, we aspire to scrutinize their relation.
Analysis of musical structure has revealed evidence of both

fractal aspects and self-similarity properties in instrument tones
and music genres. Voss and Clark [31] investigated as-
pects in music and speech by estimating the power spectra for
slowly varying quantities, such as loudness and frequency. The
fractal andmultifractal aspects of different genres of music were
analyzed in [3], where it was proposed that the use of fractal di-
mension measurements could benefit the discrimination of mu-
sical genres. Su andWu [27] applied Hurst exponent and Fourier
analysis in sequences of musical notes and noted that music
shares similar fractal properties with the fractional Brownian
motion. Properties of self-similarity, regarding the acoustic fre-
quency of the signals, were observed in [14], where aspects of
fractal geometry were studied. Given this previous evidence of
fractal properties in music, such as the fractional Brownian mo-
tion, the use of fractal and multifractal dimension for genre clas-
sification, and evidences of self-similarity properties found on
musical tones, we wish to further explore whether multiscale
fractal analysis could manifest supplementary facts about the
structure of music signals, taking into account that suchmethods

1The term ‘fractal’ was coined by Mandelbrot from the Latin word fractus,
meaning “broken”, to describe objects that are irregular (or “fragmented”) to
fit within the traditional geometry [16]. He defines a set as fractal when it
has a fractal dimension that exceeds its topological dimension. One of the most
important characteristics of fractals is that they have similar structure at multiple
scales.
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have already been employed successfully in speech recognition
applications [19].
In addition to fractals, the theory of chaos in nonlinear dy-

namical systems has contributed several ideas and methods to
model complex time-series. In this area, Lyapunov exponents
are among the most useful theoretical and computational tools
to quantify various aspects of chaotic dynamics in time-series
after their embedding in a phase space. For multiscale analysis
of non-stationary signals from the viewpoint of nonlinear com-
plex systems, Gao et al. [10], [11] have introduced the concept
of a scale-dependent Lyapunov exponent (SDLE) and an effi-
cient algorithm to compute it; further, they have applied it to
several engineering and scientific problems.
Over the years, various feature sets have been proposed and

pattern recognition algorithms have been employed to solve the
complex task of recognizing musical instruments. Such feature
sets include perception-based, temporal, spectral and timbral
features. Cepstral coefficients have been favored a long way
back, not only in speech processing but in musical instrument
recognition tasks as well. Brown et al. [4] used cepstral coeffi-
cients, constant transform, spectral centroid and autocorrela-
tion coefficients to identify four instruments of the woodwind
family. In [5] the performance of several features was com-
pared, includingMFCCs, spectral and temporal features, such as
amplitude envelope and spectral centroids for instrument recog-
nition. The results favored theMFCC features, whichweremore
accurate in instrument family classification. Experiments on real
instrument recordings [21] also favored the MFCCs over har-
monic representations.
Various classification techniques have been used to model

instruments’ sounds as well, sometimes not necessarily as
effective in modeling the temporal evolution of the features.
For instance, Gaussian mixture models (GMMs) are capable
of parameterizing the distribution of observations, although
they cannot model the dynamic evolution of the features
within a music tone as, for example, hidden Markov models
(HMMs) can do. In [6], the feature distribution of MFCCs and
delta-MFCCs was modeled with HMMs, while in [23] Vari-
able Duration HMMs were used for classification of musical
patterns.
In our work which is an enlarged version of [32], we propose

theMultiscale Fractal Dimension (MFD) of musical instrument
tones through analysis and experimental validation with recog-
nition experiments. The analysis concerns isolated musical in-
strument tones where signals are taken from the UIOWA data-
base [30]. First, we examine some of the sound characteristics
of musical instruments, the structures and sound properties of
musical signals, such as timbre and its complexity, and we high-
light issues that should be taken under consideration in the anal-
ysis that follows (Section II). Section III concerns the descrip-
tion of the proposed algorithm on multiscale fractal dimension,
which is based on previous work by Maragos [17]. The anal-
ysis of musical instrument tones is performed separately for the
attack and the steady state of the tones, while individualities ob-
served for each instrument are pointed out (Section IV). We fur-
ther examine our observations by experimentally evaluating the

MFDs on synthesized sounds composed by one or more sinu-
soidal signals (Section V). Finally, we investigate the potential
of the proposed algorithm with classification experiments using
Markov models. Specifically, we compare the descriptiveness
of MFDs with MFCCs (Section VI). We report on promising
experimental results that could accomplish an error reduction
up to 32%.

II. MUSICAL STRUCTURES

People are eager to constantly classify the world around them
and sound is not an exception. We try to capture each individual
sound with its associated characteristics and categorize it ac-
cording to various aspects, such as natural versus artificial, orig-
inal or reproduced, transient or steady or according to the means
of its production. The last one, which is probably the most sig-
nificant, holds also for musical instruments which are classified
into different families depending on their construction (shape
and material) and physical properties. The four main categories
or families are: strings (e.g., violin, upright bass), woodwinds
(e.g., clarinet, bassoon), brass (e.g., horn, tuba) and percussion
(e.g., piano). However, the main attribute that distinguishes mu-
sical instruments from each other is timbre. The determination
of timbre by the waveform constitutes one of the main relations
among sound attributes and relates to our perception of complex
sounds. This relation is one of the most difficult to describe (in
contrast to i.e., loudness or pitch), since both timbre and wave-
form are two complex quantities. All complex sounds, such as
musical instruments’ sounds, are a combination of different fre-
quencies which are multiples of the fundamental frequency
(e.g., and so on). This property is referred to as
“harmonicity” and the individual frequencies as harmonics.
Timbre, according to ASA (American Standards Associ-

ation) [1], is the quality of sound which distinguishes two
sounds of the same pitch, loudness and duration and is thus
associated with the identification of environmental sound
sources. Loosely explained, timbre—also referred as tone color
or tone quality—could be defined as the number and relative
strength (shaping) of the instrument’s harmonics (amplitude
distribution) [25], as a consequence of the structural resonances
of the instrument. Fletcher [8] showed that this analogy is not
that simple since timbre depends on the fundamental frequency
and the tonal intensity of a tone as well. In conclusion, timbre
depends on the absolute frequencies and relative amplitudes of
pure tone components varying in musical instruments from dull
or mellow (strong lower harmonics) to sharp and penetrating
(strong higher harmonics).
Some of the instruments’ sound characteristics are going

to be briefly mentioned next, based on Olson’s [22] descrip-
tions. Flute, in contrast to most musical instruments, has a
fundamental frequency which carries a significant amount
of the acoustical energy output. Low registers2 are richer in
harmonics, while in high registers the harmonics are practically
nonexistent making the tones sound clean and clear. The fact
that the fundamental frequency carries this amount of energy
results in the distinctive sound of flute which is the thinnest

2Fig. 1 shows the frequency ranges of the described instruments.
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Fig. 1. Frequency ranges of the analysis instruments where the overlap between them can be seen.

and purest of all instruments. In clarinet as well, most of the
energy resides in the fundamental which makes the sound
clear and bright. In lower registers it produces powerful tones,
while the even harmonics are suppressed due to the cylindrical
pipe which is closed at one end. In contrary, in bassoon the
fundamental frequency and lower harmonics are low in terms
of intensity in low registers, while tuba produces large output
in the low-frequency region. Horn, on the other hand, plays
in a higher portion of its harmonics compared to most brass
instruments, while its conical bore is assumed to be responsible
for its distinctive sound which is often described as “mellow”.
Finally, the harmonic content of a double bass is very high in
low register.
Although it is quite easy for people, and especially trained

musicians, to recognize the different instruments, this is not
the case if only the steady middle state of the note is heard.
The difficulty in differentiating timbre lies also in its multi-
dimensionality and the fact that it cannot be represented by
1D scales, which would be used for comparison or ordering
[25]. Instrument recognition depends a great deal on hearing
the transients of a tone, meaning the beginning (attack) and the
ending (release) [13], since they have noise-like properties influ-
encing their subjective quality. For instance, flute with its rela-
tively simple harmonic structure in order to obtain its distinctive
sound, it should be preceded by a small “puff” or noise. This is
a characteristic sound element that cannot be accomplished by
a synthetic sound [20], and it would disappear if only the steady
state of the tone would be present. The same applies for trumpet
as well, while similarly, it is vital to hear the scrape of the bow
on a violin string, or the squeak of a clarinet [13]. Iverson et al.
[15] compared the timbre contribution of the attacks and steady
states of orchestral instruments’ tones and concluded that both
contributions are roughly comparable, indicating that the salient
attributes for complete tones are present in both states. However,
it is mentioned that the absence of the attack could negatively af-
fect the determination of whether an instrument is stuck, blown
or bowed.
The duration of those transients varies not only among in-

struments but between higher and lower octave tones as well.
Some typical attack durations, Hall [13] reported, are from 20
ms or less for oboe, 30–40 ms for clarinet or trumpet, to 70–90
ms for flute or violin. Additionally, notes above middle C (des-
ignated as C4 at ca. 261 Hz) have periods of 2–4 ms, resulting
in several dozen vibration periods for the steady state to be es-
tablished. However, in [9] the duration of the attack is reported
as ms, independently of the tone or the instrument. Be-

Fig. 2. Attack, steady state and release for Bb Clarinet A3.

cause of such evidence concerning the differences of the tones’
transients, we assume that the whole duration of a tone gives
vital clues for its identity. Fig. 2 shows the attack, steady state
and release for the note A3 of Bb Clarinet.
In many applications, classification down to the level of

instruments families could be sufficient. However, in our
approach, we focus on the distinction between individual
instruments, pointing out similarities observed for the families.
Our main hypothesis is that the multiscale fractal dimension
can help distinguish the instruments’ timbre by discriminating,
not only the steady state of the tones, but the attacks as well.

III. MULTISCALE FRACTAL DIMENSION

Most features extracted from music signals, for classification
purposes, are inspired by similar work in speech and so are the
fractal features used in this paper. Many speech sounds contain
some amounts of turbulence at some time scales. Mandelbrot
[16] conjectured that multiscale structures in turbulence can be
modeled using fractals. Such ideas motivated Maragos [17] to
use the short-time fractal dimension of speech sounds, as a fea-
ture to approximately quantify the degree of turbulence in them.
He also developed in [17], [18] an efficient algorithm tomeasure
it, based on the Minkowski-Bouligand dimension [7], [18].
This measures the multiscale length of (possibly fragmented)
curves by the creation of a “Minkowski cover”, i.e., the cov-
ering of with disks of varying radius , whose center lies on
the curve. The developed algorithm is referred to as the mor-
phological covering method and the steps that are followed in
this paper as well are:
Step 1: Create the Minkowski cover using two-dimensional

operations, i.e., morphological set dilation (a.k.a. Minkowski
sum) of the graph of the signal bymultiscale versions

of a unit-scale convex symmetric planar set ,
where is the scale parameter:

(1)
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Fig. 3. Double Bass steady state (solid line), its multiscale flat dilations and
erosions at scales .

Then, compute the cover area of the
dilated set at multiple scales. Finally, the following limit of the
cover area on a log-log scale yields the fractal dimension:

(2)

Ideally is a unit disk. However, remains invariant as long as
is compact, convex and symmetric [18]. In the discrete case,

we select as an approximation to the disk by a unit-radius
convex symmetric subset of .
Step 2: In [17], [18] Maragos has shown that the above limit

for computing will not change if we approximate
with the area of the difference signal between the morpholog-
ical function dilation and erosion of the -sample discrete
signal by a function that is the upper envelope of
the -scaled discrete set :

(3)

for . This greatly reduces the com-
plexity because instead of two-dimensional set operations we
perform one-dimensional signal operations that are simple non-
linear convolutions. A further reduction of complexity [
to ] is accomplished by performing the above signal op-
erations in a scale-recursive way:

(4)

where and .
The signal dilations and erosions, which are computed in our

case, have computational structure similar to convolution and
correlation, respectively [18]. They create an area strip as a layer
either covering or being peeled off from the graph of the signal at
various scales. Fig. 3 shows a special case where is a 3-sample

Fig. 4. vs for the seven analyzed instruments for the note
C3 except for Bb Clarinet and Flute shown for C5 instead.

symmetric horizontal segment with zero height, which implies
that equals zero for and elsewhere. This
special case yields the fastestmultiscale covering algorithm, be-
cause the corresponding function dilations and erosions simply
become local max andminwithin amovingwindow; further, the
resulting fractal dimensions are invariant to any affine transfor-
mation of the signal’s range.
Step 3: In practice, can be estimated by least-squares fit-

ting a straight line to and measuring the slope of the plot of the
data versus , because

(5)

assuming that as . However, real-world
signals do not have the same structure over all scales, and hence
the exponent in the dominant power may vary. Thus, we
compute the slope of the data log versus over a
small scale window of scales that can
move along the axis. This process creates a profile of local
multiscale fractal dimensions (MFDs) at each time loca-
tion of the short speech analysis frame. The local slope of this
line is an estimate of and gives us the fractal dimension.
Throughout this paper, we have used . Fig. 4 shows a
plot of versus for various instruments. Note
the difference in the slope for larger scales . Additionally,
ranges between 1 and 2 for topologically one-dimensional sig-
nals (i.e., for continuous functions of one variable); the larger
is, the larger the amount of geometrical fragmentation of the

signal graph. is estimated at the smallest possible discretized
time scale as a short-time feature for purposes of audio signal
segmentation and event detection. The function can also
be called a fractogram and can provide information about the
degree of turbulence inherent in short-time sounds at multiple
scales [17], [19].
The specific algorithm is also significant because of its

linear computation complexity, additions, assuming
a -sample signal, since the required min-max operations
are computationally equivalent to additions. Comparing to
MFCCs, multiplications, which throughout the
experimental evaluation are used for comparison purposes, we
see that the use of MFDs is advantageous since they offer a
simple computational solution.



ZLATINTSI AND MARAGOS: MULTISCALE FRACTAL ANALYSIS OF MUSICAL INSTRUMENT SIGNALS WITH APPLICATION TO RECOGNITION 741

Fig. 5. Mean MFD (middle line) and standard deviation (error bars) of the same note A3 for the instruments Double Bass, Bassoon, Bb Clarinet (first row) and
Cello, Horn and Tuba, and the note B3 for Flute (second row) (for 30 ms analysis window, updated every 15 ms).

In general, the short-time fractal dimension at the smallest
discrete scale can provide some discrimination among
various classes of sounds. At higher scales, the MFD profile
can also offer additional information that helps the discrimina-
tion among sounds. Actually, the research from [19] and [24]
has shown evidence that, such MFD features (in conjunction
with other standard features), can provide a modest improve-
ment in recognition performance for certain word-recognition
tasks over standard speech databases. In this paper, we have
used MFDs as an efficient tool to analyze the structure of music
signals at multiple time scales. The results are quite interesting,
as we will present further down, by also showing examples of
MFDs for music signals from various instruments.

IV. MFD ANALYSIS ON MUSICAL SIGNALS

A. MFD on Steady State

Our analysis is not only based on the distinction of different
instruments, but on the exploration of the differences between
the attack and steady state of the tones as well.We intent to show
that the multiscale fractal dimension distribution of the attacks
differs enough on different instrument tones, managing to add
adequate information in a recognition task.
For the analysis of the steady state we used the whole range

of tones from the following instruments: Double Bass, Bas-
soon, Bb Clarinet, Cello, Flute, French Horn and Tuba. The cal-
culation of the short-time MFDs of the tones was performed
using 30 ms segments of the full duration of the tones. How-
ever, for the state-specific analysis that follows, only the appro-
priate segments have been processed. The signals were sampled
at 44.1 kHz, and their corresponding profiles of MFD were
analyzed for discrete scales , corresponding to
time scales from 1/(44.1) to 3 ms. Similar results were also
obtained from the analysis of 50 ms windows.
Fig. 5 shows the mean MFD and standard deviation (error

bars), computed for the note A3 for all analyzed instruments,

except Flute which is shown for B3 instead. The MFD profile
presented is typical for the following octaves of each instrument
(see Fig. 1 for the instruments’ frequency ranges and the overlap
there is between them): Double Bass for the whole range, Bas-
soon for octaves 3–5, Bb Clarinet for octaves 3–4, Cello for
octaves 2–4, Flute for octaves 3–4 and Horn for octaves 3–5.
Fig. 6 shows theMFD profiles for the lower octaves of Bassoon,
Tuba and Horn (octaves 1–2), where they appear to have certain
similarities, i.e., they get their first peak and higher value at
about and then decrease to an intermediate value. Still,
they exhibit some important differences; the maximum is at
about 1.8 for Bassoon, while Tuba and Horn share the values of
ca. . Further, Tuba shows more important deviations
of across the successive analysis frames of each tone than
Horn. Regarding the higher octaves of Bb Clarinet and Flute
(octaves 5–6) (see Fig. 6 second row), we observe another ten-
dency. The MFD profiles for those ranges get their higher value
at around at small time scales, ca. , and behold
it throughout the whole profile. The analysis of Double Bass and
Cello has shown more uniform in shape MFD profiles with an
increased deviation of across frames for lower range tones.
To conclude, apart from the last two cases, for the rest of the
analyzed instruments specific differences are observed between
the lower and higher octaves still with unvarying characteristics
across the particular octave ranges, as already discussed. Table I
presents the averaged values of the instruments’ related MFDs
for the steady state averaged over the whole range of each in-
strument (and dynamic range forte) and for specific time scales
assumed nodal points after the analysis. In the brackets, the

standard deviation is calculated to demonstrate the variability
observed for the specific scales. For those measurements, we
did not take into account the variability of MFDs through the
different octaves as discussed above. The most homogeneous
with less variability MFD profiles are noted for Horn, Tuba and
Bassoon for smaller scales, and for Bb Clarinet and Flute for
larger scales. Analysis of the multiscale fractal dimension on the
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Fig. 6. Mean MFD and standard deviation (error bars) for the note F2 for the instruments Horn, Bassoon and Tuba (first row) and the note C5 for Flute and Bb
Clarinet (second row). The MFD profiles shown are typical for the lower octaves of the three first row instruments, respectively for the higher octaves of the two
second row instruments (30 ms analysis window, updated every 15 ms).

TABLE I
AVERAGED MFD AND STANDARD DEVIATION FOR VARIOUS TIME SCALE POINTS OF THE MFD PROFILES

steady state of the instruments’ tones reinforces the claims that
the MFDs convey information that is instrument related. Even
for the cases of instruments belonging in the same family or the
same frequency range showing similar tendencies, specific dif-
ferences can be observed regarding the dimension , the scale
, or the deviation of across scales. Finally, we notice a de-

pendence of the MFD on the acoustical frequency of the sound,
which will be further explained in Section IV.C.

B. MFD on Attack

Acoustic characteristics of an instrument’s attack may be
uniquely important in order to determine whether it is struck,
blown, or bowed [15]. Continuing the analysis, we perform
an analogous study on the attacks of the instruments’ tones to
explore possible alterations. The configuration is similar to the
prior one and the process takes place after considerations of the
individualities presented on the attack of each instrument, e.g.,
the duration. The MFD profiles for the attack present similar
tendencies as the steady state of the tones. However, some of
the differences observed are the following: they have higher
for small scales , and they present more fragmentation in

comparison to the steady state. Those two alterations could be
possibly explained by noise-like factors in the beginning of the

tones as discussed in Section II and the fragmentation of the
waveform. Fig. 8 shows the average MFDs for the attack for
the whole range of the analyzed instruments (dynamic range
forte). In this case, we notice an increased value of
and a quite clear distinction of among some of the analyzed
instruments. In conclusion, the analysis of the attack has shown
certain differences, both between attack and steady state of the
same tone and among the instruments as well. This is of signifi-
cant importance since it could mark the transition from attack to
steady state, while it simultaneously carries instrument-specific
information. Fig. 7 shows examples of the attack and steady
state for the notes A3 for Cello and F4 for Flute. For Cello
a higher and more fragmented profile is observed
on the attack, while for Flute the two states present more
similarities, however, the attack has its own individualities.

C. MFD Variability for Each Instrument

An important finding of our study concerns the analysis of
the MFDs for individual tones of the same instrument. Fig. 9
shows the MFD profiles for the tones C4-B4 of Bb Clarinet over
one octave, with frequencies between ca. 260–493 Hz, which
confirm the preceding evidence of this study that there is a de-
pendency of the MFD profile on the acoustical frequency of the
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Fig. 7. Mean MFD and standard deviation of the attack and steady state of A3 for Cello (left images) and F4 for Flute (right images).

Fig. 8. MFDs estimated for the 7 analyzed instruments attacks, averaged over
the whole range (using 30 ms analysis windows). (Please see color version for
better visibility).

Fig. 9. MFD of Bb Clarinet steady state notes, over one octave for one 30 ms
analysis window. (Please see color version for better visibility).

sound. We notice that the profile increases hastily for higher fre-
quency sounds (i.e., gets its first peak and then its highest for
smaller scales ). Still, the instrument’s specific MFD profile
beholds the shape (most of the bends and sharp edges) observed
for the specific octave ranges, as discussed in Section IV.A. This
phenomenon with instrument specific variabilities is observed
mostly in woodwinds and brass instruments, while it starts de-
veloping at about the frequency range shown in Fig. 9 (i.e., C4
and above).

In the next section, supplementary analysis about the fre-
quency dependency along with other characteristics already dis-
cussed will be further explored using synthesized signals, pure
and complex tones, composed by sinusoidal signals. However,
these last findings give us evidence that the MFDs could be
useful not only for the discrimination of different instrument
classes but possibly for a proximate interpretation of the acous-
tical frequency distribution of the tone as well.

V. MFD ANALYSIS ON SYNTHESIZED SIGNALS

We apply the MFD algorithm to smaller and more manage-
able synthesized signals, such as simple or complex sinusoidal
signals, in order to evaluate observations made in our previous
analysis, e.g., the MFD deviation across analysis frames of in-
dividual notes and the variability of MFD profiles for the same
instrument, but different frequency ranges. In this experimental
analysis, we isolate and vary individual parameters of the sinu-
soids while holding all the others constant. The examined cases
are: (i) Simple sinusoidal tones of different frequencies. (ii)
Composite sinusoidal tones where sinusoids of higher frequen-
cies are added while keeping constant or reducing the ampli-
tude, and simultaneously keeping constant or varying the phase.
(iii) Simulation of a “tone” of certain frequency while adding si-
nusoids of frequencies equal to its harmonics, and finally, (iv)
simulation of a “tone” while individual harmonics are missing
in order to imitate instruments, such as the clarinet, which gen-
erally plays only the odd members of the harmonic series, e.g.,

etc. The configuration used for the experimentation
is similar to the previous one.
Single Sinusoids: Fig. 10 shows the mean and standard de-

viation (error bars) of the MFD profiles for the simplest case
of single sinusoidal signals using different frequencies. The fre-
quencies used are 5, 100, 300, and 500 Hz. The amplitude and
phase are constant equal to 1 and 3/4 of a cycle, respectively.
We observe that the MFD profile shows a dependency on the
frequency of the signal. Specifically, the first peak realizes at
half the period. Note on the last figure where the frequency is
500 Hz, the first peak of the MFD profile is at about 1 ms.
Complex Signals With Sinusoids of Double Frequency:

Fig. 11 shows the mean MFD and standard deviation of sinu-
soidal signals, when successively adding sinusoids of double
frequency to the initial sine of frequency 50 Hz. The frequen-
cies of the added sinusoids are: 100, 200, 400, 800 Hz. The
amplitude and phase remains constant. Here, we notice that
the structure of the MFD profile shows more bends while the
number of sinusoids increases.
Complex Signals With Sinusoids of Different Frequencies,

Amplitudes and Randomly Chosen Phases: In Fig. 12 sinusoids
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Fig. 10. Mean MFD and standard deviation (error bars) of simple sinusoidal signals with frequencies 5, 100, 300, and 500 Hz.

Fig. 11. Mean MFD and standard deviation of synthesized sinusoidal signals. (a) Initial sine (50 Hz), (b) , (c)
, and (d) .

Fig. 12. Mean MFD and standard deviation of synthesized sinusoidal signals while sines of double frequency and geometrically reduced amplitude are added.
(a) Initial sine (where 50 in Hz and 1 the amplitude), (b) , (c) , and
(d) . The phase offset is randomly varied.

of different frequency, amplitude and randomly chosen phase
are added to the initial signal of 50 Hz and ampli-

tude equal to 1. The frequencies and amplitudes of the added
sinusoids are: ,
and . Here, we observe that the reduced ampli-
tudes do not really affect the profile, while the randomly chosen
phases increase somehow the overall MFD for scales greater
than . However, the shape and structure of the profile
still develop similarly. Our observations seem to be consistent
with the fact that the phase does not contribute to the percep-
tion of timbre, but produces only small changes in the sensation
produced upon the listener [8], [25].
“Simulation” of C3: In Fig. 13 a simulation of the tone C3

is attempted by using sinusoids of frequencies equal to the fun-
damental frequency Hz and the harmonics of C3. The
amplitude and phase remains constant. The frequencies of the
successively added sinusoids are integer multiples of , i.e.,

Hz. Note an increased
variation of across different analysis frames for the signals
that are composed of six or more sinusoids.
“Simulation” of C3 Using Frequencies Equal to the Odd

Harmonics: In Fig. 14, the mean MFD and standard deviation
of the simulation of the tone C3 can be seen, while adding si-
nusoids of frequencies equal only to the odd harmonics of the
tone. Here, we attempt to imitate instruments such as the clar-
inet while trying to determine whether such characteristics of
the instruments’ harmonic content could be visible in the shape

of the MFD profile. The sinusoids used for this experiment have
frequencies equal to Hz. The amplitude
and phase remains constant. In this case, note how the MFD
profiles differentiate when individual frequencies are missing;
higher multiscale fractal dimensions and more complex struc-
tures are observed. In the case where the amplitudes of the even
harmonics were just lowered to half, certain changes were ob-
served, although not as significant.
After the analysis of the MFDs on synthesized signals, we

can conclude that there is a dependency between the MFD pro-
file and the frequency of the signal and this is manifested both
for simple and more complex signals. Additionally, the number
of the sinusoids added to the initial signal affects the shape of
the MFD profile, which becomes more complicated in structure
while an increased variation of across the analysis frames
may be observed as well. Finally, the short-time fractal dimen-
sion at the smallest discrete scale gets higher when a
random signal is added to the initial signal.
Even though there is no direct comparison of the previous

synthesized signals to the more complex instrument tones, we
believe that we gain significant insight concerning some of the
differences observed among the analyzed instruments, the MFD
profiles for tones of the same instrument and even across a single
tone. For instance, the fact that the attack of some instrument
tones shows a higher fractal dimension at the smallest scale

could possibly imply the existence of noise-like fac-
tors. The increased deviation of for lower octaves, as in Tuba,
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Fig. 13. Mean MFD and standard deviation of sinusoidal signals while adding sinusoids of frequency equal to the harmonics of C3 (131 Hz).

Fig. 14. Mean MFD and standard deviation of sinusoidal signals while adding sinusoids of frequency equal to the odd harmonics of C3.

could point towards a richer harmonic content. The fact that
the MFD profiles differ when the frequency content of the tone
changes (e.g., for higher frequencies) could give us an indica-
tion of the relative position of a tone on the musical scale and
an intuitive approximation of the actual frequency distribution
of the signal. Although synthesized tones, consisting of steady
component frequencies, could not really simulate tones of real
instruments, since such a synthesis cannot produce the dynamic
variations of the instrument’s envelope characteristics, these ex-
periments gave us a somehow better understanding about the
perception of real musical instrument sounds.

VI. RECOGNITION EXPERIMENTS

A. Data

It has been demonstrated that the multiscale fractal dimen-
sion could be used to distinguish different musical instruments.
In this section, we attempt to incorporate the MFDs to recogni-
tion experiments in order to evaluate the results of our previous
analysis. The experiments were carried out using 1331 notes,
the full range from 7 different instruments, which are Double
Bass, Bassoon, Cello, Bb Clarinet, Flute, Horn and Tuba; and
they cover the dynamic range from piano to forte. The analysis
was performed in 30 ms frames with a 15 ms overlap.
To efficiently succeed, it is essential that the incorporated fea-

tures contain information that is relevant to the classification
task, and that the dimensionality of the final feature set is small
enough to accomplish the best possible computational perfor-
mance. To achieve this, dimensionality reduction of the MFD
feature space was conducted using PCA analysis, so as to decor-
relate the data and obtain the optimal number of features that ac-

counts for the maximal variance. Additionally, other dense and
non-redundant feature sets emerged after sampling of the fea-
ture space (logarithmically or by observation). The final feature
sets and feature set combinations were evaluated using static
Gaussianmixture models (GMMs) and dynamic hiddenMarkov
models (HMMs), to model the temporal characteristics of the
signals, with diverse combinations of states and/or mix-
tures. The performance of the selected features was compared
to a standard feature set of 12 MFCCs plus the energy, sepa-
rately or enhanced with their first and second temporal deriva-
tives. MFCCs were chosen both for their good performance
and the acceptance they have gained in instrument recognition
tasks. The analysis of the MFCCs was performed in 30 ms win-
dowed frames with a 15 ms overlap, using 24 triangular band-
pass filters. For the implementation of the Markov models the
HTK [28] HMM-recognition system was used, by EM estima-
tion using the Viterbi algorithm. In all cases, the train sets were
randomly selected to be the 70% of the available tones, and the
results presented are after a five-fold cross validation.

B. Experimental Configuration
Aside from the five sets of features that were evaluated during

previous experiments, see [32], all feature sets were enhanced
with their first and second temporal derivatives. Table II shows
the feature sets with ’s which are going to be discussed next,
however, lots of further examination preceded the final feature
selection. In the case of the sampled feature sets two different
configurations were considered: a) the logarithmically sampled
feature set (consisting of thirteen sample points), example of
which can be seen in Fig. 15, augmented with its first and
second temporal derivatives MFDLG and b) an enhanced
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Fig. 15. Example of the 13 logarithmically sampled points of the MFD, for Bb
Clarinet (A3), forming the MFDLG feature vector.

TABLE II
LIST OF ENHANCED FEATURE SETS WITH S. MFDPC DENOTES
PCA ANALYSIS ON THE INDIVIDUAL FEATURE SETS, WHILE MFDPC

ON THE FULL CONCATENATED FEATURE SET

feature vector (MFDLGOB) consisting of twenty-four sample
points, namely, the MFDLG plus eleven more points carefully
chosen after observation. The MFDLG feature vector consisted
of , where , and
, while the MFDLGOB was augmented with at sample

points . Both sets
included the fractal dimension at the smallest scale .
Experimentation was also carried out concerning the sets where
the PCA analysis would be applied. The two cases considered
were: i) PCA on the concatenated feature set of the MFDs with
’s or ii) on the three individual features sets: the MFD feature

vector, its first, and its second temporal derivatives.
After several evaluations of the features and since the

MFDLGOB gained comparable results with the MFDLG ,
we only report results for the MFDLG . Regarding the PCA
applied on the concatenated or the individual feature sets,
we notice that when applied to the individual feature vectors,
resulting in a 13-dimensional vector from each set (in total
39 features), there is in general an increase in recognition.
However, good results are also gained by applying PCA in
the concatenated feature vectors consisting of 30, 32 or 39
principal components, some of which are reported next.
The evaluation employed the variation of the number of states
[3–9] and the number of mixtures [1–5] using GMMs up

to 5 mixtures and HMMs up to 9 states. Considering the struc-
ture of the instruments’ tones, as discussed in previous sections,
we adopted a left-right topology for the modeling. In addition,
we used multi-stream modeling to separately model the two

Fig. 16. Weight optimization for multistream cases for HMMs for
and . X-axis shows the stream weight for the MFDs (where

).

TABLE III
RECOGNITION RESULTS, WHERE DENOTES THE NUMBER OF
STATES AND THE NUMBER OF MIXTURES. FOR FEATURE

SET SPECIFIC INFORMATION, SEE TABLE II

different sets of features (i.e., MFD versus MFCC) using dif-
ferent stream weights to indicate the reliability of each stream.
Stream weights can either be fixed by hand to some values that
reflect the relative confidence on one stream or they can be es-
timated [12], [26]. In this paper, the optimization of the weights
was performed on a hold-out set, which was selected from the
initial train set (the 70% of the initial train set was split and
60% was used for training and 10% formed the hold-out set).
For the experimentation, we assumed that the two stream ex-
ponents satisfied the constraints and

. The stream weights that maximized the accuracy
on the hold-out set were selected and applied to the actual test
set. Fig. 16 shows the accuracy obtained on the hold-out data
after five-fold cross validation, while total accuracy results on
the test set, which are going to be discussed next, are shown in
Table III.

C. Results

The obtained accuracy scores of the recognition results for the
various cases of featurs sets were quite promising and the most
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TABLE IV
RECOGNITION RESULTS PER INSTRUMENT CLASS FOR THE THREE
BEST COMBINED FEATURE SETS, MFDPC MFDPC MFDLG ,

COMPARED TO MFCC (FOR , EXCEPT FOR
MFDPC WHICH IS SHOWN FOR )

representative are reported next. Fig. 16 shows the accuracy ob-
tained on the hold-out set for the three different MFD sets fused
with the MFCCs. We notice that the assignment of higher or
equal stream weight on the MFCCs, i.e., between – , re-
sults in most cases on better scores for either three or five states
and five mixtures. Therefore, we choose three cases, which are

for MFCCs, and in Table III, we present the
results on the final test sets for the various feature sets with ’s.
For most cases (even those not presented here), the combination
of the proposed features with the MFCCs proves out to yield
slightly better results than theMFCCs alone, although theMFDs
alone show lower discriminability. Since we noted an absolute
increase of almost 10% for GMMs with , in comparison
to , the scores and the discussion that follows regarding
both classification methods concerns the cases where
mixtures. Our first remark is about the error reduction, which
is up to 26% for MFDPC and up to 32%
and 10% for MFDPC and MFDLG , re-
spectively. Furthermore, comparing with previous experiments
(see [32]), we observe that the addition of ’s on the MFDLG
achieves an error reduction in recognition up to ca 50%, while
on the MFDPC up to 35%. HMMs acquire greater results, since
they also imply the temporal information of the tones.
For the experiments of features without the s, the main dis-

advantage of the MFDs was the low discriminability between
Bb Clarinet and Flute which yield the lower results among
the investigated instruments (ca 55% recognition each). Our
analysis has pointed out some of the similarities of their MFD
profiles for the higher frequency tones and that was possibly
the main drawback of the method and the consequence for the
low accuracy scores. Table IV shows the percentage of correct
recognition per instrument obtained by HMMs for the fused
feature set cases in comparison to MFCC . By reviewing
these results, we note an improvement in recognition of all
instruments and especially in the discrimination of Bb Clarinet
and Flute. Note that Double Bass and Tuba are again among the
best recognized instruments regarding the MFDs, in accordance
with our expectancies after the analysis.
Additionally, for the first set of experiments (see [32]), we

noticed that the combination of MFDs with MFCCs enhanced
the discriminability of the Bassoon, Bb Clarinet and Horn while
they decreased the accuracy obtained by the MFCCs for Cello
and Flute. Double Bass and Tuba kept the already good perfor-

mance of the MFCCs. Again, after inspection of the latter set of
experiments, we mark an increase in recognition for most ana-
lyzed instruments, although there are cases of some of the MFD
feature sets where the use of the derivatives decreases individual
instruments’ good results, as for Cello.
Finally, regarding the MFDPC and MFDLG , we note that

the logarithmically sampled features are almost as good if not
better in specific evaluation cases as the PCA acquired features,
something that signifies the fact that there is practically no need
for further processing of the features and thus decreased calcu-
lation burden.

VII. CONCLUSION

In this paper, we employ fractal dimension measurements
and propose the use of a multiscale fractal feature for structure
analysis of musical instrument tones motivated from similar
successful ideas used for speech recognition tasks. Our goal is to
gain insight about the instruments’ characteristics and achieve
better discrimination in tasks such as instrument classification.
Experiments were conducted, where the proposed features
(MFDs) were evaluated against the baseline MFCC features.
The results show that the MFDs can improve the recognition
accuracy when fused with the MFCCs, accomplishing an error
reduction up to ca. 32%. Even though the specific fractal fea-
tures have lower discriminability than the MFCCs as far as the
resulting accuracy is concerned, yet they acquire high discrim-
inability in some of the analyzed instruments. With the MFD
analysis on synthesized sounds we managed to get a higher
level of intuition regarding the different phenomena observed
on the MFD profiles of the instruments. To conclude, based on
our experimental hypothesis and recognition evaluation, there
is strong evidence that musical instruments have structure and
properties that could be emphasized by the use of multiscale
fractal methods as an analysis tool of their characteristics. We
have shown that they can provide information about different
properties of the tones and the instruments, while the recogni-
tion experiments have shown to be promising in most cases.
For our future research we intend to enhance the usage of

multiscale methods for music analysis by relating such ideas
with the physics of the instruments. Additionally, we are in-
quiring the usage of multiscale fractal dimension for genre clas-
sification. Some initial experimental evaluation gave us evi-
dence that MFDs could prove promising. It remains to inves-
tigate whether the MFDs can be applied in other audio signals
and for other purposes as well.
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