
Features Level Type States RMS(mm)

Audio (A) Phoneme HMM 2 2.56 0.60

Qualisys (QS) Phoneme HMM 2 2.30 0.65

A-QS Phoneme HMM 3 2.24 0.66

A-QS Phon.-Phon. HMM+LF 2-2 2.02 0.71

A-QS Phon.-Viseme HMM+LF 2-2 1.99 0.72

A-QS Phoneme MS-HMM 2 1.95 0.74
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Speech inversion ?
Recover vocal tract geometry from
the speech signal and speaker’s face
Applications in Speech Therapy, 
Language Tutoring, Speech Coding, 
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Active Appearance Modeling
Automatic visual feature extraction 
from frontal view, without markers 
Account for both facial shape and 
appearance variations
 

spectral characteristics/MFCC

Switching Linear Modeling
Complex audiovisual-articulatory 
interactions are captured in a piece-
wise manner
Constituent mappings are built 
using Canonical Correlation Analysis 
 

Evaluation

Zero states correspond to the case of 
a global linear model.

Exploiting jointly audio and 
visual information in the proposed 
scheme clearly improves 
performance relative to either 
audio or visual- only estimation. 

 

Audiovisual Fusion
Audio and visual mapping switching processes can 
interact at various synchronization levels

LF: Late Fusion, MS: Multistream

Switching Process
Switching is governed by a hidden Markov process
Phoneme/Viseme HMMs are trained using Baum-Welch
State sequence determined using the Viterbi algorithm
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yt = Aixt + εt
Time t, state i:

Maximum A Posteriori articulatory 
parameter estimate: 
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Qi is the covariance of the 
approximation error 
The prior of x is considered to be 
Gaussian determined at the training 
phase
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xprior ~ N(x ,σ x )

Canonical Correlation 
Analysis
Analyze the co-variability of audiovisual 
and articulatory data
Determine the linear mappings by only 
keeping the first canonical correlation 
directions

Maximum A Posteriori 
Estimation


