

National Technical University of Athens, Greece Royal Institute of Technology (KTH), Sweden

Audiovisual Speech Inversion by Switching Dynamical Modeling governed by a Hidden Markov Process

N. Katsamanis, G. Ananthakrishnan, G. Papandreou P. Maragos, O. Engwall

Computer Vision, Speech Communication and Signal Processing Group http://cvsp.cs.ntua.gr

Speech Inversion

The Goal

Identify the speech production system given observed speech

The Motives

- Understanding speech production
- Applications in speech synthesis, recognition, coding, language tutoring

The Framework

Consider speech to be an audiovisual process

The Method

Switching linear dynamical modeling driven by a hidden Markov process

Speech production system identification

- Describe Geometry
 - Area function, tube models
 - Articulatory models
 - Geometrical (Mermelstein 1973, Birkholz 2006)
 - Data-driven (Maeda 1979, Engwall 2003)
 - Coordinates of important articulators
 - Tongue tip, lower incisor etc.
- Determine sound sources
 - Location/Spectrum/Intensity

Data

Approaches

From Audio only

- Codebook (Ouni 2005), Neural networks (Richmond 2003)
- ☐ Gaussian Mixture Model (Toda 2007), Extended Kalman Filtering (Dusan 2000), Hidden Markov Models (Hiroya 2004)

Exploiting speaker's facial information

- □ Significant correlation between speaker's face and vocal tract (Yehia 1998, Jiang 2002)
- Independent component analysis of the face and relevant vector machines or neural networks to invert (Kjellstrom 2006, 2008)
- □ Active appearance model for the face, canonical correlation analysis and late fusion of HMMs (Katsamanis 2007, 2008)

Contributions

- The inversion problem is one-to-many. Visual and dynamic constraints can alleviate ill-posedness. Nonlinearities can be handled efficiently in a piecewise linear manner.
- Introduction of a switching linear dynamical mechanism to model the audiovisual-to-articulatory mapping.
- Typical quantitative evaluation (RMS error) does not account for the relative importance of the errors.
- Weighted evaluation scheme based on a support vector machine classifier to determine importance of errors.

Linear Acoustic-Articulatory Mapping

Observations y, vocal tract parameters x $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$

Approximate observation model

$$\mathbf{y} = C\mathbf{x} + \epsilon$$

Assumptions

$$p(\mathbf{x}) \sim N(\mathbf{x}; \bar{\mathbf{x}}, \sigma_x)$$
 $p(\epsilon) \sim N(\epsilon; \mathbf{0}, Q)$

Maximum A Posteriori

$$\hat{\mathbf{x}} = (\sigma_x^{-1} + C^T Q^{-1} C)^{-1} (\sigma_x^{-1} \bar{\mathbf{x}} + C^T Q^{-1} \mathbf{y})$$

Training (Mean Square Error Minimization)

Linear Dynamic Articulatory Modeling I

lacksquare Given the observations up to moment $\mathbf{t}, \mathbf{Y}_t = \{\mathbf{y}_1, \dots, \mathbf{y}_t\}$

$$p(\mathbf{x}_t|\mathbf{Y}_t) = \frac{p(\mathbf{y}_t|\mathbf{x}_t)p(\mathbf{x}_t|\mathbf{Y}_{t-1})}{p(\mathbf{y}_t|\mathbf{Y}_{t-1})}$$

Analysis

$$p(\mathbf{x}_t|\mathbf{Y}_{t-1}) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1})p(\mathbf{x}_{t-1}|\mathbf{Y}_{t-1})d\mathbf{x}_{t-1}$$

Model

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{w}_t$$
 Articulatory Dynamics $\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t$ Audiovisual Observation

$${\bf w} \sim N(0,Q), {\bf v} \sim N(0,R), {\bf x}_0 \sim N({\boldsymbol \mu}_0,V_0)$$

Linear Dynamic Articulatory Modeling II

- Inference
 - Kalman filter (MAP solution)

$$\hat{\mathbf{x}}_{t|t} = \hat{\mathbf{x}}_{t|t-1} + K_t(\mathbf{y}_t - C\hat{\mathbf{x}}_{t|t-1})$$

- Training/Identification
 - State Model (Articulatory Dynamics)
 - Autoregressive (AR) state modeling
 - Maximum likelihood (MMSE)
 - Observation Model (Audiovisual-Articulatory Mapping)
 - Canonical Correlation Analysis

Switching Linear Dynamic Modeling I

For a phoneme/part of a phoneme

$$\mathbf{x}_t = A_{1,c}\mathbf{x}_{t-1} + A_{2,c}\mathbf{x}_{t-2} + B_c\mathbf{u}_c + \mathbf{w}_t$$
$$\mathbf{y}_t = C_c\mathbf{x}_t + \mathbf{v}_t$$
$$B_c = I - (A_{1,c} + A_{2,c})$$

- Previous work (Dusan and Deng, 2000)
 - Separate model for each transition between any two phonemes
 - For each model: SOM clustering to identify piecewise linear mapping
 - Extended Kalman Filtering and Maximum likelihood to choose model and then Extended Kalman Smoothing
- Our Assumption
 - Model switching can be considered to be a Markovian process
 - One model per phonemic HMM state

Switching Linear Dynamic Modeling II

- Switching Process
 - Audiovisual Hidden Markov Models
 - Multistream, Asynchronous
- Training
 - Likelihood Maximization for training (conventionally)
 - Estimate responsibilities
 - Train one separate Linear Dynamic System per state
- Optimal State Sequence
 - Phonetic Information is given
 - Viterbi forced alignment

Audiovisual Speech Inversion: MOCHA

- Provided by CSTR, Univ. Edinburgh
- Two subjects (one male, one female), 460 British TIMIT Utterances each
- Articulation (2-D coords of 9 EMA coils)
- Video of the female speaker's face
- 30 minutes of usable data
- Needed Preprocessing-labeling Video

Results

Weighted Evaluation

Weighted Evaluation

Weighted Root Mean Squared (RMS) Error

$$E_{wrms} = \frac{\sum_{k=1}^{P} \sqrt{\sum_{i \in k} (Y_i - \widehat{Y}_i)^T D_k (Y_i - \widehat{Y}_i)}}{N}$$

- Weighting matrix for each phoneme
 - Classification using SVMs
 - Sensitivity analysis to estimate weights for each articulatory parameter

Weighted Evaluation Results

Weights for the evalutaion of the inversion of plosives

LDS: Global Kalman Filter HMM: Switching Linear Modeling

Proposed Method: Switching Linear Dynamic System (SLDS)

	Root Mean Square Error					
	Unweighted			Weighted		
	LDS	HMM	SLDS	LDS	HMM	SLDS
Audio	2.15	1.76	1.78	2.17	1.66	1.66
Visual	2.29	1.56	1.62	2.32	1.49	1.54
Audiovisual	1.89	1.53	1.43	1.88	1.47	1.36

Conclusions

- Audiovisual speech inversion framework
 - Switching linear dynamical model
 - Weighted evaluation scheme to better account for important errors

For the future

- Cope with limited data, over-fitting problems
 - Clustering
 - Tree-based (Hiroya and Honda, 2004), Data-driven
 - Adaptation
 - Adapt global regression model to local data
 - MLLR (King and Frankel, 2005) or Bayesian (Bishop, 2007) adaptation
- Invert to articulatory model parameters

Thank you!

