

Prosodic Characterization of Reading Styles using Audiobook Corpora

4pSCb32

Michael Proctor, Athanasios Katsamanis

http://sail.usc.edu

162nd Meeting of the ASA Thursday 06-Nov-11 San Diego, CA

Perception of Read Speech

- native speakers of Germanic Languages have strong intuitions about the felicity of different reading styles: [1]
- preference for 'spontaneous' speech over read speech
- preference for human readers over TTS
- preference for some readers over others
- which properties of read speech influence listener preferences and perceptions of felicity?
- prosodic structures of read speech and spontaneous speech have been shown to differ: do prosodic factors contribute to the perception of different reading styles as more felicitous?
- can relevant prosodic differences be systematically quantified?

Characterizing Read Speech

- differences in the realization of read speech (c.f. spontaneous): [1-7]
- higher F0, more F0 variation, more F0 declination
- lower speech rate + longer pauses
- longer major tone units
- less shimmer, less vowel reduction
- less known about the phonetic characteristics which differentiate reading styles of different speakers
- wide variety of metrics have been proposed to capture prosodic variability and stylistic characteristics of speech: [8-10]
 - PVI: pair-wise variability indices
- ΔV, %V: occurrence, distribution of vocalic intervals
- ΔC, %C: occurrence, distribution of consonantal intervals
- VarCoV/C: std. dev of cons/vocalic interval duration/mean
- problems with metric definitions, reproducibility, sample size
- speech style difference studies limited by lack of availability of transcribed speech data representing the different speech styles under examination

Goals

- (i) Examine listener responses to a range of different readers:
 - to what extent listener preferences are individual or global
 - to what extent individual readers are preferred over others
- (ii) Examine the prosodic characteristics of preferred and dispreferred read speech:
 - to what extent does prosody influence perceptions of felicity?
 - which metrics best characterize most favored read speech?
- (iii) Make use of underexploited new resources for linguistic research: audiobook corpora and companion open-source texts
 - previously pioneered Yuan et al. 2008 and others [11]
 - take advantage of massive, freely-available, multi-speaker database containing hours of unanalyzed speech
 - rich resource for studying speech styles, prosody, listener responses, & for testing methodologies on large datasets

Method: Listener Preferences

Preferences for reading styles evaluated by asking listeners to evaluate speech samples from different readers, using a head-to-head comparison paradigm:

- ten x 10-second speech samples extracted at random intervals from audio recordings of each reader to be evaluated
- recordings taken from two works of a single author (Jack London)
 of standard 20th Century American English [12,13]
- auditors: 13 native speakers of General American English
- listeners compared all readers by auditing 3 random samples of each reader, juxtaposed against 3 samples of each other reader
- forced choice/no preference decision task
- hierarchy of readers constructed from cumulative rankings of listener preferences

Results: Listener Preferences

• Individual auditor's preferences differ, but overall, clear preferences and dispreferences emerge:

		Male Reader Rankings					Female Reader Rankings				
	1st	2nd	3rd	4th	Last	1st	2nd	3rd	4th	Last	
	M4	M1	M5	М3	M2	F4	F2	F1	F5	F3	
2	M4	M1	M2	M5	M3	F4	F1	F3	F5	F2	
3	M2	M1	M3	M5	M4	F4	F5	F1	F2	F3	
ļ	M4	M2	M5	M1	M3	F4	F2	F5	F1	F3	
5	M5	M2	M1	M3	M4	F5	F4	F2	F3	F1	
6	M3	M2	M1	M4	M5	F4	F2	F3	F5	F1	
7	M1	M2	M4	M3	M5	F2	F1	F3	F4	F5	
3	M4	M2	M1	M5	M3	F4	F2	F5	F3	F1	
)	M2	M1	M4	M3	M5	F4	F2	F5	F3	F1	
.0	M2	M1	M4	M3	M5	F2	F1	F4	F5	F3	
.1	M2	M1	M4	M5	M3	F2	F5	F4	F3	F1	
.2	M2	M4	M1	M5	M3	F4	F3	F5	F2	F1	
.3	M2	M1	M4	M3	M5	F4	F1	F2	F3	F5	

Method: Quantifying Prosody

Audio samples preped for further analysis by forced-alignment phonetic transcription of each complete recording sampled in the listener survey.

- companion texts sourced from LibriVox, Project Guttenberg [12,13]
- forced alignment using SailAlign: adaptive, iterative speech recognition & text alignment facilitating processing of audiobooklength speech recordings, and robust to transcription errors [14]
- transcriptions and interval timings generated at sentence-, word-, and phoneme-based levels of analysis

To compare the prosodic characteristics of each reader's speaking style, metrics were calculated for each text and reader including:

- percentage of vowels or vocalic intervals (%V)
- coefficient of variation of vocalic intervals (VarCoV)
- coefficient of variation of intervocalic intervals (VarCoC)
- normalized pair-wise variability index (nPVI)

Results: Reader Prosody

Conclusions

- listener responses to read speech are varied and complex, reflecting individual preferences which cannot always be identified or quantified
- nevertheless, some readers are consistently preferred amongst a population of native English speaking listeners; other reading voices are consistently identified as less felicitous
- standard metrics for quantifying prosodic properties of speech failed to robustly characterize readers as more or less felicitous, consistent with the intuitions of auditors
- more work is required to develop metrics capable of capturing properties of read speech which listeners are sensitive to

Future Directions

- broader survey of reading styles:
- more listeners
- more samples within and across literary genres
- control for specific prosodic and extra-prosodic factors through selection or manipulation of reading voices
- cross-language listener comparisons: native speakers of syllabletimed vs. foot-timed languages
- more sophisticated metrics capable of capturing super-segmental features of speech in multiple dimensions

References

- [1] G. Laan (1997). The contribution of intonation, segmental durations, and spectral features to the perception of a spontaneous and a read speaking style. Speech Communication 22(1):43-65
- [2] R. Remez, P. Rubin, L. Nygaard (1986). On spontaneous speech and fluently-spoken text: Production differences and perceptual distinctions. <u>JASA</u> 79(S1): 26
- [3] F. van Beinum (1991). Spectro-temporal reduction and expansion in spontaneous speech and read text: Focus words versus non-focus words. Proc. Phonetics and Phonology of Speaking Styles:

 Reduction and Elaboration in Speech Communication: 36.1-36.5
- [4] E. Blaauw (1995). On the perceptual classification of spontaneous and read speech. Doctoral dissertation, Utrecht University.
- [5] M. Eskenazi (1993). *Trends in speaking styles research*. Proc. Eurospeech '93: 501-509
- [6] P. Howell, K. Kadi-Hanifi (1991). Comparison of prosodic properties between read and spontaneous speech material. Speech Communication 10(2):163-169
- [7] G. Fant, A. Kruckenberg, L. Nord (1991). Some observations on tempo and speaking style in Swedish text reading. Proc. Phonetics and Phonology of Speaking Styles: Reduction and Elaboration in Speech Communication: 36.1-36.5
- [8] D. Stojanovic (2009). Issues in the quantitative approach to speech rhythm comparisons. Working Papers in Linguistics 40(9):
- [9] E. Grabe, E. L. Low (2003). *Durational variability in speech and the rhythm class hypothesis*.

 Papers in Laboratory Phonology (7): 515-546
- [10] F.Ramus, M. Nespor, J. Mehler (1999). Correlates of linguistic rhythm in the speech signal.
 Cognition (73): 265-292
 [11] J. Yuan, M. Liberman (2008). Vowel acoustic space in continuous speech: An example of using
- audio books for research. Cat-Cod

 [12] J. London (1906). White Fang. Source: http://www.gutenberg.org/ebooks/23976
- [13] J. London (1903). The Call of the Wild. Source: http://librivox.org/call-of-the-wild-by-jack-london/
- [14] A. Katsamanis, M. Black, P. Georgiou, L. Goldstein, S. Narayanan (2011). SailAlign: Robust long speech-text alignment. Proc. New Tools and Methods for VLSPR, UPenn:

Acknowledgements

Research supported by NIH Grant R01 DC007124-01