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Abstract
This paper investigates different statistical modeling frame-
works for articulatory speech data obtained using real-time (RT)
magnetic resonance imaging (MRI). To quantitatively capture
the spatio-temporal shaping process of the human vocal tract
during speech production a multi-dimensional stream of direct
image features is extracted automatically from the MRI record-
ings. The features are closely related, though not identical, to
the tract variables commonly defined in the articulatory phonol-
ogy theory. The modeling of the shaping process aims at de-
composing the articulatory data streams into primitives by seg-
mentation. A variety of approaches are investigated for carrying
out the segmentation task including vector quantizers, Gaus-
sian Mixture Models, Hidden Markov Models, and a coupled
Hidden Markov Model. We evaluate the performance of the
different segmentation schemes qualitatively with the help of a
well understood data set which was used in an earlier study of
inter-articulatory timing phenomena of American English nasal
sounds.
Index Terms: speech production, articulatory modeling, real-
time magnetic resonance imaging

1. Introduction
The recent technological advances in real-time (RT) magnetic
resonance imaging (MRI) allow the speech researcher access to
large quantities of rich articulatory data of running speech [1].
As opposed to previously available speech production data from
electro-magnetometry (EMA), which provides spatially sparse
point tracking, and ultrasound, which is confined to capturing
the tongue shape, RT-MRI captures the air-tissue boundaries
along the entire vocal tract from the glottis to the lips. RT-MRI
data hence appear to be a good basis for studying the vocal tract
shaping process in a holistic way, i.e., they allow the investiga-
tion of individual articulators while simultaneously taking into
account the effects of inter-articulatory coupling. However, the
identification of shaping primitives from RT-MRI data (or from
any other articulatory data) is not trivial, due to the data’s high
dimensionality, the complexity of the deformation space of the
vocal tract, and the inter and intra subject variability in articula-
tion.

In this article we will address the problem of identifying ar-
ticulatory gestures from streams of RT-MRI image sequences.
According to the theory of articulatory phonology [2], a ges-
ture is a goal directed action of constriction forming by a vocal
tract articulator. This process is modeled using the response of
a second order linear system to a constriction target input step
function. An articulator may be used to execute a sequence of
consecutive gestures which leads to temporal gestural overlap.
The gestures are quantified using tract variables, and it is impor-
tant to realize that the mechanical coupling, due to the anatom-
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Figure 1: Lip aperture (LA) and tongue tip constriction degree
(TTCD) time series for the utterance /pay nova s/ as derived
from RT-MRI data (details given below).

ical constraints, may produce spatially correlated measurement
noise across different tract variables. So, the recognition of ges-
tures from articulatory data must undo or at least take into ac-
count this spatio-temporal mixing.

For example, we can consider the lip aperture (LA) and
tongue tip constriction degree (TTCD) time series for the to-
ken /pay nova s/ as segmented from the carrier “Type pay nova
slowly.” (Fig. 1). Here, we have manually marked the critical
constriction forming processes. The segment labeled “A” of the
LA trace corresponds to the bilabial closure for the formation
of the /p/. Note that TTCD is also relatively constricted during
this interval, due to articulatory coupling: the jaw contributes
to lip closure, and brings the tongue tip towards the palate as a
side-consequence. The purple arrow pointing down is meant to
represent the direction of this coupling effect – from a phonol-
gically controlled gesture to a passive coupling consequence.
This is followed by the TTCD segment “B” for the formation of
the diphthong /ay/. The diphthong is made using tongue body
gestures which couple into the TTCD measurements. The sub-
sequent tongue tip closure at the alveolar ridge in segment “C”
is critical for the formation of the nasal, and we can identify a
subtle effect on the LA trace due to the spatial coupling of the
lips and the tongue via the jaw. As the tongue body is then used
to produce the /o/ in segment “D”, the lips move closer for the
labiodental /v/ in segment “E,” which again has an effect on the
TTCD through spatial coupling. Finally, the production of the
vowel /a/ (“F”) with the tongue body is followed by a period of
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(a) Sample image. (b) Masked image.
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(c) Feature time series for 7 re-
alizations of /pay nova s/.
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(d) Feature time series for 7 re-
alizations of /pain over s/.

Figure 2: Sample image and direct image feature time series.

narrow TTCD for the sibilant /s/ in segment “G.”
Previously, a variety of heuristical approaches have been

pursued to model the shaping kinematics, such as the decom-
position of individual EMA-traces into strokes [3], though with
mixed results. In this paper we explore the use of a dynami-
cal Bayesian network [4] to model the articulatory multi-stream
data in a machine learning framework. Hereby, the joint mod-
eling of different regions of the vocal tract is critical for cop-
ing with inter-articulator coupling, and the statistical processing
will ensure a degree of robustness against intra subject variabil-
ity.

This article is organized as follows. In Section 2 we will
propose a simple yet robust way to obtain shaping informa-
tion from the midsagittal MR images which aims at providing
measurements closely related to the tract variables. Given a
low-order parametric representation of the vocal tract shape we
will, in Section 3, attempt a segmentation of image feature time
series with vector quantizers (VQ), Gaussian Mixture Models
(GMM), uncoupled HiddenMarkovModels (HMM), and a cou-
pled HMM (CHMM). The CHMM network is versatile, and it is
particularly attractive since it is capable of handling asynchrony
between data streams [5]. Finally, in Sections 4 and 5 we will
discuss the results and draw conclusions.

2. Data preparation and parameterization
The data corpus for this case study consisted of two types
of utterances produced by a female native American English
speaker, namely “Type pay nova slowly.” and “Type pain over
slowly.” The recordings were made using the scan protocol de-
scribed in [6]. Seven realizations of each type, extracted from
the carrier phrase, yielded the tokens /pay nova s/ and /pain over
s/ used for our analysis. The starting frame was identified by the
bilabial closure for /p/, and the end frame was chosen based on
the narrow tongue tip constriction at the alveolar ridge for /s/.
The token duration was on the order of 1 second, and our MRI
frame rate is approximately 22 frames per second. No timing
normalization was carried out. A sample midsagittal MR image
is shown in Fig. 2(a).

The robust automatic extraction of the vocal tract shape in
terms of its air tissue boundaries from the midsagittal MRI is not
straightforward and is still considered to be an active domain
of research [7, 8]. A versatile yet compact shape representa-
tion and parameterization, which would be beneficial for speech
modeling purposes such as recognition, inversion, or synthesis,
is not easy to obtain. Previous work in this domain includes
the principal components based shape model used in [9, 10]
or the constriction based vocal tract model implied by articu-
latory phonology [2]. Deriving such constriction measurements
from image sequences can increase uncertainty of the data used
for modeling. Given the complex geometry of the vocal tract
using a region based description of constriction events, rather
than pinpointing a specific constriction location or its degree,
appears to be a more robust choice. We focus on such a param-
eterization of the image sequences directly so as to capture the
constriction events implicitly but robustly.

In this study we confine ourselves to investigating the ar-
ticulatory processes involving the lips, the tongue tip, and the
velum, and we select correspondingly in each image rectangu-
lar regions of interest as shown in Fig. 2(a) (shown as red, green,
and blue box, respectively). The location of the regions is con-
sidered fixed, although this choice can also be dictated in a data
driven way based on the region statistics such as the local image
intensity correlation properties [11]. We can assume negligible
head motion occurred during the experiment since the subjects
head was well immobilized.

We then mask out the rest of MR image as shown in
Fig. 2(b) and compute for each frame the average image inten-
sity in each of the regions. The time series of these image in-
tensity features are shown in Fig. 2(c) and 2(d) for all 7 realiza-
tions of /pay nova/ and /pain over/, respectively, and they have
been ten-fold interpolated. The time series have a straightfor-
ward intuitive interpretation, since constriction forming events
correspond to increasing the average image intensity because
tissue moves into the particular region of interest. Conversely,
a constriction release leads to a drop of average intensity over
time since tissue moves out of the affected region. Hence the
features closely resemble the constriction degree tract variables
defined in articulatory phonology. Further, this representation
can inherently capture the linguistically meaningful events in
the presence of production variability, including due to inter-
speaker morphological differences.

The two utterances were chosen because they differ min-
imally in the syllable position of the nasal, which is in coda
position for /pain over/ and in onset position for /pay nova/.
Previous studies [12, 13] have shown that systematic relative
timing differences exist for the tongue tip closure gesture and
the velum opening gesture during the nasal production depend-
ing on its position in the utterance, and we will hence use this
data set as a test case for our modeling framework.

3. Data modeling
Due to the limited number of training realizations in the data
set considered, we will confine ourselves to detecting the gross
shaping phenomena, i.e., the closure events “A,” “C,” “E,” and
“G” in Fig. 1. A simplified gestural transcription is shown in
Fig. 3, where “OP” means open, “CL” means closed, and “X”
means irrelevant state. The challenge for the segmentation algo-
rithm will be to not give a false “CL” detection result at the very
end of the LA trace (solid red), since that maximum is due to
coupling from the TTCD (solid green). Equivalently, we would
like no false “CL” alarm in the beginning of the TTCD trace,
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Figure 3: Lip aperture (LA), tongue tip constriction degree
(TTCD), and velum aperture (VEL) for the utterance /pay nova
s/ with gestural transcription. Solid line - feature time series,
dashed line - first derivative.

since that maximum is due to spatial coupling with the LA trace.
Both requirements are difficult to achieve robustly by a sim-
ple quantization of the time series. As noted earlier, the image
sequences of vocal tract contours reflect a fairly complex dy-
namic geometry, and simple rule-driven ways of robustly iden-
tifying minimum constriction location/degree are difficult to im-
plement, even with region based parameterization.

Generally, the time series data are quite noisy, and their first
derivatives even more so (dotted lines in Fig. 3), especially for
the velum (blue curves) due to the low image contrast in the
pharyngeal region. So, rules such as through simple threshold-
ing to find inflection points often do not yield reliable results.
Hence, statistically capturing the time series behavior directly
appears as a reasonable approach to pursue.

In the following we will augment the feature streams by
their first derivatives, and attempt the modeling using VQ,
GMM, HMM, and CHMM systems. These methods were cho-
sen for a variety of reasons. The VQ is the most straightforward
way to implement a simple instantaneous, i.e., time indepen-
dent, thresholding mechanism for the individual 2-dimensional
augmented feature data streams. The quantization levels can be
found robustly using the well known k-means procedure, which,
given the number of quantization levels, is otherwise parameter
free. A manual transcription of all 14 data tokens as shown in
Fig. 3 was produced, and it was used for the training of all of the
methods. For the VQ, two centers were allocated correspond-
ing to the two class labels. It should be noted that a VQ could
also be implemented on the joint feature streams of all measure-
ments, though we chose to keep the streams separate to allow
“fair” comparisons of the VQ, GMM, and HMM methods.

The GMM can be considered a more sophisticated statis-
tical way to achieve an instantaneous quantization, and it af-
fords soft output values. However, in our case we implemented
subsequent hard clipping and thereby lose this advantage, but
we included the GMM approach since it is often used in prac-
tice, and it can provide initialization parameters for the subse-
quent HMM systems. Just as the HMM and CHMM, the GMM
is trained using the expectation maximization (EM) algorithm,
which for all applications in this study was employed with a
convergence threshold of 10−5. The GMMs were implemented
using the MATLABNetlab toolbox which is a component of the
BNT toolbox [4]. The models were initialized using k-means,
and they had a full covariance matrix.
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Figure 4: 3-chain CHMM layout (squares - hidden discrete
nodes, shaded circles - continuous observations).

The HMM is a step up from the GMM in terms of modeling
power and system complexity. It can be thought of as a time-
dependent quantizer, and this method was chosen to address the
temporal gestural overlap within a tract variable feature time se-
ries. Three individual HMMs were used for the LA, TTCD, and
VEL data. The HMMs were implemented using the MATLAB
HMM toolbox which is also included in the BNT package. The
hidden nodes had two states corresponding to the two segmenta-
tion labels used for each tract variable. Using the transcriptions,
we initialized the observation models as bi-variate Gaussians
with full covariance matrices, as well as the state priors and the
ergodic state transition model.

The CHMM is the most complex system that we tested for
this study, and it allows spatio-temporal modeling of the com-
bined time series data. The model had three chains correspond-
ing to the LA, TTCD, and VEL features (see Fig. 4), and it
was implemented using the MATLAB BNT toolbox. The three
hidden nodes had two states each, and the observations were
bi-variate Gaussians. The CHMM parameters were intialized
using the previously trained uncoupled HMMs.

We carried out the segmentation of our 14 observed ar-
ticulatory traces using leave-one-out cross-validation, and we
present in Table 1 some typical results. The graphs in the left
column correspond to a realization of /pay nova/ while the right
column come from a realization of /pain over/. The top row
shows the segmentation results for the LA trace, the middle row
for TTCD, and the bottom row for VEL. The 4 plots in each
row show the tract variable trace versus time (blue) and the seg-
ment boundaries (red vertical bars) as found by the VQ, GMM,
HMM, and CHMM methods (top to bottom). The segments are
labeled k1,2 for VQ, g1,2 for GMM, h1,2 for HMM, and c1,2 for
CHMM.

4. Discussion
In general we observed that the VQ and the GMM methods
produced more spurious transitions, as shown for LA and VEL
segmentation for /pay nova/, and TTCD segmentation for /pain
over/ in Table 1. Generally, the HMM and the CHMM produce
comparable and more consistent results.

With respect to the HMM and CHMM method, we found
that both of them consistently labeled the intial bilablial closure
segment in the LA trace. They also found the onset of the labio-
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Table 1: Sample segmentation results.
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dental segment, but they repeatedly failed to identify its correct
ending. However, both methods managed to avoid giving a false
closure segment in the beginning of the TTCD trace. We found
one realization of /pay nova/ for which the HMM, as opposed
to all other methods, did not identify the VEL gesture at all.

Using the CHMM segmentation, we can now investigate
the lag time difference between TTCD and VEL events for the
formation of the nasal for the two types of tokens, i.e., we mea-
sure the time difference between the onset of the VEL opening
(labeled c2 in the bottom row, bottom graph of Table 1) and the
onset of the TTCD closure (labeled c1 in the center row, bot-
tom graph). For the /pay nova/ tokens we obtain an average lag
time of 96.8ms (σ=68ms), whereas for /pain over/ we obtain a
lag of 279ms (σ=39.5ms). These results are encouraging since
they are in accordance with previous findings [12, 13], and they
seem to suggest that the proposed feature extraction procedure
and the CHMM segmentation method appear to be robust and
provide results that are consistent with our expectations.

In general we can suggest a number of ways to continue this
study in order to improve the segmentation performance. On
the one hand, one can certainly choose more complex models,
e.g., higher-order mixtures for modeling the observations. And
of course one can also scale up the entire procedure to include
other image regions, leading to more chains in the CHMM. In
any case, as more model parameters will have to be estimated
a larger data corpus will be necessary. The possibility of col-
lecting significant amounts of imaging data with RT-MRI holds
promise in this regard.

5. Conclusions
We conclude from our study that the proposed method of image
feature extraction has merit, and that the CHMM framework is a
promising candidate for the discovery of articulatory primitives
from RT-MRI data.

On a wider scope, this study indicates that if we combine (a)
an explicit multistream transcription (gestures) with (b) appro-
priate techniques for extraction of articulatory time functions

from RT-MRI data and with (c) the appropriate statistical mod-
els, we are well positioned to derive phonological information
automatically from a rich set of articulatory data.
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