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Abstract
Behavioral coding focuses on deriving higher-level behavioral
annotations using observational data of human interactions. Au-
tomatically identifying salient events in the observed signal data
could lead to a deeper understanding of how specific events in
an interaction correspond to the perceived high-level behaviors
of the subjects. In this paper, we analyze a corpus of married
couples’ interactions, in which a number of relevant behaviors,
e.g., level of acceptance, were manually coded at the session-
level. We propose a multiple instance learning approach called
Diverse Density Support Vector Machines, trained with acous-
tic features, to classify extreme cases of these behaviors, e.g.,
low acceptance vs. high acceptance. This method has the ben-
efit of identifying salient behavioral events within the interac-
tions, which is demonstrated by comparable classification per-
formance to traditional SVMs while using only a subset of the
events from the interactions for classification.
Index Terms: behavioral signal processing, multiple instance
learning, diverse density, support vector machines

1. Introduction
In recent years, it has become of interest to use signal process-
ing and machine learning methods to automatically determine
humans’ affective and behavioral states [1]. There has been an
abundance of work devoted to machine understanding of human
affect, e.g., emotional state [2], whereas many other facets of
human behavior are only beginning to be analyzed in this way.
Machine aided analysis of human behavioral interactions could
offer a novel tool set to be utilized by diverse domains such as
psychology, education, and security. In this paper, we apply a
data-driven machine learning approach that uses salient events
to classify interactions between married couples enrolled in a
therapy study.

In order to assess behavioral interactions, psychologists of-
ten rely upon manual coding of audiovisual recordings. Be-
havioral observations can be time intensive and require a great
deal of human effort. In addition to the time and cost limita-
tions of these methods there is also the issue of subjectivity of
analysis between evaluators. This inherent subjectivity has been
addressed by standard coding manuals such as the Social Sup-
port Interaction Rating System (SSIRS) the Couples Interaction
Rating System (CIRS) [3, 4], which are used to evaluate mar-
ried couples’ interactions. Although attempts at standardization
have been made, agreement between evaluators is still an issue
within the field [5].

We propose using signal processing and machine learn-
ing techniques to address the aforementioned limitations of
human behavioral observation of couple therapy interactions.
Automatic classification of couples’ therapy interactions using

acoustic features was first attempted in [6]. This work demon-
strated that acoustic features extracted from couples therapy
sessions were suitable for automatically predicting trained eval-
uators’ perceptions of participants’ behavior at the session level.
These analyses offer a summative session-level assessment of
the behavior of interest without offering insights into what as-
pects of the interaction could have contributed to the resultant
judgement.

In addition to classifying behaviors in the interactions at the
session-level, it is also of interest to determine salient behav-
ioral events within the sessions. This is of interest because it
may offer a more concise representation of the interaction and
allow for an analysis of how feature level occurrences corre-
spond to the perceived human behavior. In our work we apply
a multiple instance learning (MIL) framework to address this
problem. Different formulations of MIL have been applied to
many domains including drug activity prediction [7, 8], image
categorization [9], and audio classification [10]. We use a par-
ticular formulation of MIL known as Diverse Density Support
Vector Machines (DD-SVM) that was introduced in [9]. This
makes no preconceived designations on what specific acoustic
events may be deemed salient, i.e., we do not attempt to detect
specific intuitive cues such as laughter or crying. Instead, we
utilize the proposed methodology to identify feature level oc-
currences that are salient to the specific behavioral classification
task, without regard to explicit, semantically defined events.

We apply this framework to acoustic features extracted
from couples therapy interactions. The experimental results
show that this technique achieves comparable classification per-
formance on this dataset to traditional SVMs. Since the DD-
SVM framework only uses portions of the interaction deemed
to be salient, this comparable performance implies that the DD-
SVM method is able to detect regions that are most relevant for
the classification of the behavioral codes.

2. Corpus
The corpus was collected as part of a joint longitudinal study
on couples therapy between the University of California, Los
Angeles and the University of Washington [11]. The study in-
cluded recording 134 chronically distressed married couples at
various intervals over a one year therapy period: before ther-
apy, 26 weeks into therapy, and two years after therapy. The
corpus consists of 569 ten-minute dyadic interactions (between
husband and wife), in which the married couples discussed a
problem in their relationship.

Each session was recorded with a single far-field micro-
phone (16 kHz, 16-bit). Because the recordings were not origi-
nally intended for automatic analysis, audio specifications (e.g.,
microphone placement, environmental conditions) were highly
variable across sessions. For this reason, sessions with an av-
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erage signal-to-noise ratio (SNR) less than 5 dB were omit-
ted from this analysis. The sessions were transcribed with the
speaker explicitly labeled (wife or husband). No timing infor-
mation was marked in the transcriptions. A more detailed de-
scription of the corpus can be found in [6].

As part of the original study, the sessions were coded ac-
cording to 33 behavioral codes: 20 codes from the SSIRS and
and 13 from the CIRS. Both coding systems rated individual
spouses’s behavior at the session-level on a 1-9 scale (1 cor-
responding to low occurrence of a particular behavior and 9
corresponding to high occurrence). Each session was manu-
ally coded by three to four trained evaluators. The six codes
with the highest inter-evaluator agreement were then chosen for
automatic classification: level of acceptance toward the other
spouse, level of blame, global positive affect, global negative
affect, level of sadness, and use of humor.

One necessary preprocessing step taken before we could
extract meaningful acoustic features for each spouse was seg-
menting the sessions into individual speaker regions. Rather
than manually segmenting the corpus, we exploited the exis-
tence of the transcriptions (with speaker labels) and used a re-
cursive speech-text alignment procedure implemented in freely-
available software we developed, SailAlign [12]. After conver-
gence, the session was split into wife regions, husband regions,
and unknown regions in which we were unable to align the au-
dio to the transcription. For this paper, we ignored all sessions
in which we could not segment at least 55% of both the wife’s
and husband’s transcribed words into single speaker regions.
After taking into account the 5 dB and 55% speaker segmen-
tation thresholds, 372 sessions remained for analysis (65% of
the original corpus).

In accordance with previous and ongoing work with this
corpus, we framed the problem of behavioral rating prediction
as a binary classification task. For each code and gender pair
separately we identified the sessions in which the correspond-
ing spouse had mean code scores (averaging across evaluators)
that fell in the top 70 and bottom 70 of the score range (approx-
imately the top and bottom 20%) and selected those for training
and testing our classifiers. This split produced 12 gender-and-
code dependent subsets, i.e., 6 for the husbands and 6 for the
wives, of 140 sessions, each comprising 70 “high” examples of
the code and 70 “low” examples for the specific code-gender
pair.

3. Methodology
At an abstract level, each of the recorded sessions to be ana-
lyzed corresponds to a sequence of behavioral manifestations.
For example, one of the spouses may initially be exhibiting a
low level of acceptance towards the other spouse but this may
gradually change as the interaction unfolds. By the end of the
interaction, this change could be great enough to result in the
spouse being rated as highly accepting at the session-level de-
spite the fact that the corresponding behavior is not apparent
throughout the whole session. Clearly, automatic prediction of
the session-level code, i.e., classification into either high or low
level of acceptance, should exploit the fact that there are certain
instances in the interaction where the behavior is more strongly
displayed. These instances are considered to be the most salient
for the particular task but typically are not specifically annotated
as such. What we have is just the session-level code and, for that
reason, an instance-level salience model cannot be developed in
a supervised manner. This problem falls into a general category
of problems that is commonly referred to as multiple instance

learning. Our goal is to identify the instances of the interaction
that make the largest impact and rely on them for the behavioral
classification of the entire interaction.

Adopting the relevant machine learning terminology we
refer to each session Bi as a bag and we assume that
it comprises several behavioral instances, i.e., Bi =
{Bi1, Bi2, ...BiNi

}, ∀i = 1, 2, ..., L, where Ni is the number
of instances in bag i and L is the number of training bags. Each
behavioral instance, Bij , is represented by a Nf × 1 vector
of features. In our work, we assume that each instance corre-
sponds to a speaking turn of the spouse being evaluated. Each
bag has a label, +1 or −1 for high or low rating respectively of
the behavioral code of interest. The set of labels is denoted as
Y = {y1, y2, ..., yL} : yi ∈ {+1,−1}∀i. Given the specifici-
ties of the problem, we apply Diverse Density Support Vector
Machines to predict the bag labels from the instance observa-
tions.

3.1. Diverse Density Support Vector Machines

For each spouse and behavioral code combination we use the
DD-SVM algorithm to classify the session-level label of the
spouse being assessed. The DD-SVM method is briefly de-
scribed below. A more in-depth description of the algorithm
can be found in [9].

1. Estimate the diverse density for each instance. We want
to identify regions where there is a high concentration
of instances from different bags of the same label and
which are far from instances from bags of the opposite
label. For this purpose, we first estimate the diverse den-
sity at each instance which is defined as [13, 9]:

DD(x,w) =
L∏

i=1

[
1 + yi

2
− yi

Ni∏
j=1

(
1− e

−||Bij−x||2
w

)]
,

(1)
where ||x||w = [xT diag(w)2x]

1

2 . In this equation, x is
the feature vector representing an instance prototype and
w is a weight vector to compensate for the fact that the
features in x may not be equally important.

2. Maximize the diverse density. We then find local maxi-
mizers to the diverse density using the Expectation
Maximization-Diverse Density (EM-DD) algorithm, as
originally introduced in [8].

3. Prototype selection. After the diverse density is maxi-
mized, instance prototypes of insufficiently high diverse
density are rejected. Then we select local maxima from
each region of high diverse density to represent that re-
gion. These representative instance prototypes are then
regarded as the “salient” prototypes from these regions.
The size of each region is controlled by an independent
parameter β which has to be chosen appropriately [9].

4. Bag feature computation and classification. Once se-
lected, the Np salient instance prototypes and their
corresponding weights, denoted by starred pairs
(x∗k,w

∗
k), k = 1, 2, ..., Np, are used to compute the

features to represent each bag. The feature vector for a
given bag/session, φ(Bi), defined as:

φ(Bi) =

⎡
⎢⎢⎢⎣

minj=1,...,Ni
||Bij − x

∗
1||w∗

1

minj=1,...,Ni
||Bij − x

∗
2||w∗

2

...
minj=1,...,Ni

||Bij − x
∗
Np
||w∗

Np

⎤
⎥⎥⎥⎦ , (2)
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and corresponds to the minimum weighted distance of
the bag, to each of the salient instance prototypes. This
results in anNp×1 feature vector representation of each
session, where Np is the number of salient prototypes.
Using these features, we classify the sessions in a stan-
dard SVM-based framework.

3.2. Acoustic Features

For this study we chose a much smaller feature set than the one
employed in [6]. This is because the aim of our current study
is to investigate the selection of salient regions by applying the
DD-SVM technique and not to determine the most complete
acoustic representation. Mel-Frequency Cepstral Coefficients
(MFCCs) were chosen because they can be robustly extracted
and they have been shown to perform well in the behavioral
classification task.

In our setup, 14 MFCCs were extracted every 10 ms over 25
ms Hamming-windowed frames using the openSMILE software
[14]. The MFCCs were computed using a bank of 26 triangu-
lar filters evenly centered on the mel-scale from 20 to 8000 Hz.
Once extracted, the MFCCs are separately mean-normalized for
each speaker in every session. The feature vectorBij represent-
ing the speaker turn/instance j in the session/bag i comprises
the means and variances of the MFCCs in the particular turn.
These 28-dimensional feature representations of behavioral in-
stances are then used to select the instance prototypes and train
the SVM as described in Sec. 3.1.

4. Experimental Results
Ten fold cross validation across the couples was used in all our
classification experiments. So, sessions from the same couple
could only appear either in the training or in the testing set, but
not in both. As a baseline, we chose to use a conventional SVM
method where each session Bi is represented by an extended
feature vector φext(Bi) that includes the minimum distances to
all possible instances in the training set and not only to those
selected using the diverse density maximization process. As in
[9] the Gaussian kernel, K(a, b) = e−γ||a−b||2 , is used. The
parameters γ, C for both the baseline and the diverse density
SVMs, as well as the parameter β used in the prototype selec-
tion process for the latter one are chosen using two fold cross
validation on the training set.

Table 1 shows the average classification accuracy across
the ten folds. The average classification accuracy, across the
behavioral code-spouse configurations, is 67.9% (± 7.9%) us-
ing DD-SVMs versus 66.9% (± 8.4%) using traditional SVMs.
The percentage of instance prototypes selected using the diverse
density based process is shown in Table 2. On average, across
the behavioral code-spouse pairs, 26.8% of the prototypes were
kept for classification. This is a large reduction in the amount of
data provided for the classification task with an average increase
in classification performance.

To further elaborate on the diverse-density based instance
prototype selection process, in Fig. 1 we provide scatter-plots
of the training sessions for a randomly chosen fold for the code
humor. For visualization purposes, each session Bi is repre-
sented by only two components of the vector φ(Bi). The “high
humor” rated sessions are marked with a ‘+’ , while the “low
humor” ones are marked with a ‘◦’. In Fig. 1(a), the compo-
nents corresponding to the most salient positive instance proto-
type and most salient negative instance prototype were chosen,
i.e., to those with the maximum diverse density. It is evident

Table 1: Average classification accuracy (%) of behavioral
codes.

Configuration Wife Husband
DD-SVM SVM DD-SVM SVM

acceptance 73.6 72.1 69.3 69.3
blame 77.1 79.3 72.3 71.4
positive 74.3 70.0 55.0 58.6
negative 75.0 77.9 71.4 70.0
sadness 66.4 57.1 63.6 62.9
humor 52.9 51.4 63.6 63.6

Table 2: Percentage of instances used for DD-SVM classifica-
tion (average across folds). The baseline SVM classification
used 100% of the instances.

Configuration Wife Husband
acceptance 40.5 26.8
blame 41.7 35.4
positive 28.7 43.4
negative 34.9 18.9
sadness 6.0 18.5
humor 4.1 22.3

that although these prototypes alone do not provide clear dis-
crimination between the regions, they do offer some apparent
separation of the sessions from different class. The components
chosen in Fig. 1(b) for the representation correspond to the in-
stance prototypes with the minimum diverse density. There is
no visible discrimination between regions demonstrating that
session features computed based on these instance prototypes
would possibly deteriorate overall classification performance.
Figure 1(c) gives the corresponding trainining set representa-
tion when two prototypes with approximately the average di-
verse density of all instance prototypes are used for the reduced
φ(Bi) estimation. While there is significantly more discrimi-
nation between classes than in Fig. 1(b), it is not to the extent
displayed in Fig. 1(a). Sessions in Fig. 1(d) are represented by
distance vectors from two randomly selected prototypes. Over-
all, these figures support the validity of using the diverse density
to systematically select salient instance prototypes for our clas-
sification task.

5. Conclusions and Future Work
In this work, we demonstrated that the DD-SVM algorithm of-
fers a promising framework for the couples’ behavioral inter-
action classification task. This suggests that expert evaluators’
perceptions of certain human behaviors can be accurately mod-
eled when only instances within an interaction that are salient to
that behavior are considered. In Table 2, we show a comparison
of the percentage of prototypes that are kept as salient for each
code/spouse type configuration. It is apparent that different be-
havioral codes require significantly different percentages of the
total number of instances for classification. For example, when
classifying wives’ level of acceptance 40.5% of the instances
are kept as salient whereas only 6.0% are kept for classifying
wife’s level of sadness. This suggests that certain perceived hu-
man behaviors, as represented by acoustic features derived from
speech, can be modeled by only regarding representative exam-
ples of that behavior.
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Figure 1: Two-dimensional training set representation based on
a reduced feature vector for each session for the wives’ level
of humor configuration. The axes, dp and dn, represent the
distance of the training bags from the positive and negative in-
stance prototype of selected diverse density.

It should be noted that the proposed method did not yield
improved classification performance in all behavioral code,
spouse configurations. In these cases (wife’s level of blame,
wife’s global negative affect, and husband’s global positive af-
fect) the difference in accuracy is small (2.2%, 2.9%, and 3.6%,
respectively) compared to the reduction in number of instances
used for classification (52.9%, 65.1%, and 56.6%). This is most
likely due to the automatic procedure by which instance proto-
types are determined to be non-salient. As part of our future
intended work, we hope to improve the tuning of this procedure
to ensure that no salient instances are disregarded.

It is also important to note that the instances selected as
salient prototypes are done so with regard to the signal-derived
features used for classification, in this case MFCCs. The proto-
types with maximum diverse density may change to some de-
gree depending on how representative a certain feature set is
of the underlying behaviors taking place in these interactions.
Therefore in the future, we plan to explore different feature sets
and how they affect which prototypes are selected as salient to
the classification task.

In the future we would like to further study the aspect of
saliency in human behavioral interactions. This can be accom-
plished by introducing more feature sets, exploring different ap-
proaches/frameworks, and altering our underlying definitions of
what constitutes a behavioral instance. With regard to feature
sets, in [6] we used a very large feature set (Nf = 2007) and
demonstrated the merit of various feature combinations. While
this approach may not be tractable in our current configuration,
we plan to try other feature subsets that performed well. It is
also of interest to choose a feature set that will lend itself to
some higher level interpretability. Initial plans will incorporate
prosodic features such as pitch and energy.

Our fundamental definition of a behavioral instance as a
speaker turn within an interaction may be revised in future stud-
ies. For example, we intend to investigate how salient events
compare when the duration of a behavioral instance is defined
by computational methods such as a sliding time window of

constant or varying width or by linguistically informed events
such as spoken words or syllables. We are also interested in
exploiting a priori information in saliency detection. However,
this approach will first require a data set where interactions are
coded at a finer level of granularity than the session-level.

Finally, we would like to fuse this approach with different
modalities such as session transcripts and visual data. A multi-
modal approach may offer a fuller representation of behavioral
interactions, just as humans utilize multiple modalities to un-
derstand and interpret one another’s behavior.
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