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Abstract— We address the problem of audiovisual speech inversion,

namely recovering the vocal tract’s geometry from auditory and visual

speech cues. We approach the problem in a statistical framework,

combining ideas from multistream Hidden Markov Models and canonical

correlation analysis, and demonstrate effective estimation of the trajec-

tories followed by certain points of interest in the speech production

system. Our experiments show that exploiting both audio and visual

modalities clearly improves performance relative to either audio-only or

visual-only estimation. We report experiments on the QSMT database

which contains audio, video, and electromagnetic articulography data

recorded in parallel.

I. INTRODUCTION

There has been a number of studies showing that there is important

correlation between the speaker’s face and the motion of important

vocal tract articulators such as the tongue, [1]–[4]. Motivated by such

findings we investigate a statistical framework to recover vocal tract

related information by exploiting both the speech signal and visual

cues from the speaker’s face concurrently recorded.

In [4], the authors explore simple global linear mappings to unveil

associations between the behavior of facial data and articulatory

data during speech. They show that analysis can be facilitated by

performing a dimensionality reduction process which determines the

components that mostly influence the relation between the visual and

articulatory spaces. Their experimental data consist of measurements

of marker positions on the face and electromagnetic sensors in

the vocal tract as well as the generated speech acoustics, for two

speakers. They conclude that a high percentage (80%) of the variance

observed in the vocal tract data can be recovered from the facial

data. This conclusion is also verified in [3] on similar data and

again by means of global multivariate linear regression. In the latter

work, the authors mainly focus on the variations of the articulatory-

visual relations for various CV (Consonant-Vowel) syllables and

how they influence speech intelligibility. More recently, in [1], [2]

articulatory parameters are recovered from facial and audio data either

via relevance vector machines or a global linear mapping. These

previous studies have shown that, although a global linear mapping is

arguably a rough approximation of the underlying complex non-linear

interaction between audio-visual features and articulatory positions, it

can nonetheless serve as a first approximation, and also as a baseline

system on which more advanced techniques have to improve.

On the other hand, to recover articulatory motion from acoustics

only, various sophisticated approaches have been followed. In [5] it is

found that Mixture Density Networks perform better than Multilinear

Perceptrons in acoustic-to-articulatory inversion. The experiments

were performed on the MOCHA database [5]. Note that this database

also includes video recordings of the speaker’s face that however

have not been exploited in [5]. To estimate articulatory trajectories

from Mel Frequency Cepstrum Coefficients (MFCCs) derived from

the audio signal, a Hidden Markov Model(HMM)-Based Speech Pro-

duction Model is proposed in [6]. This model allows the imposition of

more elaborate constraints to the dynamic behavior of the articulatory

parameters that are estimated for given speech acoustics. The HMM

Fig. 1. Qualisys-Movetrack Data Acquisition setup. The positions of the
face markers are tracked by the Qualisys system. In parallel, electromagnetic
articulography is applied to track the coils placed on the tongue, lips and
teeth. Speech is recorded concurrently (Figure from [7]).

framework is reported to outperform other inversion approaches based

on codebooks.

In this context, our contribution is twofold. Firstly, we properly

extend the framework in [6] in order to effectively fuse visual and

audio cues to predict articulatory trajectories. For this purpose, we

introduce multistream HMMs, which are commonly used in state-of-

the-art audiovisual (AV) speech recognition systems [8]. Secondly,

we give a viewpoint of multivariate regression and the related Wiener

filter by means of Canonical Correlation Analysis (CCA). This nat-

urally leads to optimal reduced-rank linear regression models, which

are novel in the area of articulatory inversion and can potentially

improve the predictive performance of the multivariate linear model.

These reduced-rank approaches are particularly relevant in the case

of models trained on only few data, such as the linear regressors

embedded in the applied HMM-based system described in Sec. II,

where each regressor corresponds e.g. to a single phoneme with only

O(100) occurrences in the training set, and thus reduced-rank or

other regularization techniques are essential for obtaining regression

models with reasonable generalization performance. Experiments are

reported on the Qualisys-Movetrack (QSMT) database which has

been collected and kindly provided by KTH [7].

II. PROPOSED METHOD

Linear Models for Speech Inversion From a probabilistic point

of view, the solution to AV speech inversion may be seen as the

articulatory configuration that maximizes the posterior probability of

the articulatory characteristics given the available AV information:

p(x|y) = p(y|x)p(x)/p(y) (1)

It would be intuitive to first consider the static case in which both the

articulatory and the audiovisual characteristics do not vary with time.

The parameter vector x (n elements) provides a proper representation

of the vocal tract. This representation could be either direct, including

space coordinates of real articulators, or indirect, describing a suitable

articulatory model for example. The AV parameter vector y (m
elements) should ideally contain all the vocal-tract related information

that can be extracted from the acoustic signal on the one hand and



speaker’s face on the other. Formant values, linear spectral pairs or

MFCCs have been applied as acoustic parameterization. For the face,

space coordinates of key-points, e.g. around the mouth, could be used

or alternatively parameters based on a more sophisticated face model.

For the maximization, the distribution p(y) is irrelevant since it

does not depend on x. Distribution p(x) ∼ N(x; x̄, σx) is assumed

to be Gaussian, for simplicity. The relationship between the AV and

articulatory parameter vectors is in general expected to be nonlinear

but could be to a first order stochastically approximated by a linear

mapping (both x and y are centered by mean subtraction):

y = Wx + ǫ (2)

The error ǫ of the approximation is regarded as zero-mean Gaussian

with covariance Q. The stochastic character of this approximation is

justified by the fact that the acoustic and visual representations may

not be directly related to the vocal-tract shape due to imperfect source

cancellation and possible measurement uncertainty which should be

taken into consideration.

The maximum a posteriori probability solution is:

x̂ = (σ−1

x + W T Q−1W )−1(σ−1

x x̄ + W T Q−1y) (3)

The estimated solution is a weighted mean of both the observation

and the prior models. The weights are proportional to the relative

reliability of the two summands.

Linear Mapping Estimation The linear mapping can be de-

termined by means of multivariate linear analysis techniques. Such

techniques constitute a class of well studied methods in statistics

and other quantitative disciplines; one can find a comprehensive

introduction in [9]. We can easily see that, when we completely

know the underlying second-order statistics in the form of covariance

matrices Rxx, Ryy , and Ryx, then the optimal in the MSE sense

choice for the m × n matrix W corresponds to the Wiener filter

W = RyxR−1

xx , (4)

and the covariance of the approximation error in (2) is Q , E{(y−
ŷ)(y − ŷ)T } = Ryy − RyxR−1

xx RT
yx.

Since the second order statistics are in practice unknown a-priori,

we must contend ourselves with sample-based estimates thereof; for

example, if the N × n matrix X gathers N samples of x, then a

reasonable estimate is Rxx ≈ 1

N
XT X , and similarly for Ryy , and

Ryx. These estimates may not be reliable enough when the training

set size N is small relatively to the feature dimensions n of x, m
of y, and, consequently, when plugged into (4) to yield W , can lead

to quite poor performance when we apply the linear regressor (2)

to unknown data. We will see that CCA, among other benefits,

provides a sound mechanism to select reduced-rank multivariate

linear regression models which can outperform the conventional full-

rank model in the small training set size case.

Canonical Correlation Analysis Canonical Correlation Analysis

is a multivariate statistical analysis technique for analyzing the co-

variability of two sets of variables, x and y [9, Ch. 10]. Similarly to

the better-known principal component analysis (PCA), CCA reduces

the dimensionality of datasets, and thus produces more compact and

parsimonious representations of them. However, unlike PCA, it is

specifically designed so that the preserved subspaces of x and y
are maximally correlated, and therefore CCA is especially suited

for regression tasks, such as articulatory inversion. In the case that

x and y are Gaussian, one can prove that the subspaces yielded

by CCA are also optimal in the sense that they maximally retain

the mutual information between x and y [10]. CCA is also related

to Linear Discriminant Analysis (LDA): similarly to LDA, CCA

performs dimensionality reduction to x discriminatively; however the

target variable y in CCA is vector-valued and continuous, whereas

in LDA is single-valued and discrete.

In CCA we seek directions, a (in the x space) and b (in the

y space), so that the projections of the data on the corresponding

directions are maximally correlated, i.e. one maximizes with respect

to a and b the correlation coefficient between the projected data aT x
and bT y

ρ(a, b) =
aT Rxyb√

aT Rxxa
p

bT Ryyb
. (5)

Having found the first such pair of canonical correlation directions

(a1, b1), along with the corresponding canonical correlation coef-

ficient ρ1, one continues iteratively to find another pair (a2, b2)
of vectors to maximize ρ(a, b), subject to aT

1 Rxxa2 = 0 and

bT
1 Ryyb2 = 0; the analysis continues iteratively and one obtains up

to k = rank(Rxy) ≤ min(m, n) direction pairs (ai, bi) and CCA

coefficients ρi, with 1 ≥ ρ1 ≥ . . . ≥ ρk ≥ 0, which, in decreasing

importance, capture the directions of co-variability of x and y. For

further information on CCA and algorithms for performing it, one is

directed to [9].

Interestingly, the Wiener filter regression matrix (4) of the mul-

tivariate regression model can be expressed most conveniently by

means of CCA as

W = RyxR−1

xx = RyyBPAT , (6)

where A = [a1 . . . ak] and B = [b1 . . . bk] have the canonical

correlation directions as columns, and K = diag(ρ1, . . . , ρk) is

a diagonal matrix of the ordered canonical correlation coefficients.

One can prove [10] that by retaining only the r first, 1 ≤ r ≤ k,

canonical correlation directions/coefficients, i.e. by using the reduced-

order Wiener filter

Wr , RyyBrPrA
T
r , (7)

with Ar = [a1 . . . ar] and Br = [b1 . . . br], and Kr =
diag(ρ1, . . . , ρr), one can achieve optimal filtering in the class of

order-r filters in the MSE sense. What is more important for us, when

the training set is too small to accurately estimate the covariance

matrices in hand, these reduced-rank linear predictors can exhibit

improved prediction performance on unseen data in comparison to the

full-rank model [11]. This is analogous to the improved performance

of PCA-based models in well-studied pattern recognition tasks, such

as face recognition, when only a subset of the principal directions

are retained.

Determination of Articulatory Parameter Trajectories This

framework can be extended to handle the inversion of time-varying

AV parameter sequences. The probabilities in Eq. (1) will now

concern vector sequences. The main consideration is to find accurate

observation and prior models that would make the solution tractable.

This is not straightforward given the complexity of the relationship

between the acoustic and the articulatory space, which in general

is nonlinear and one-to-many. Further, visual information should be

properly exploited in order to somehow constrain inversion and re-

duce the number of possible solutions. Motivated by current research

in AV speech recognition, we extend the work in [6] to multistream

HMMs in order to better fuse the audio and visual modalities.

Intuitively, in the case of continuous speech, we expect the linear

approximation of Eq. (2) to only be acceptable for limited time

intervals corresponding to a specific phoneme, or at least a part

of the phoneme. We also expect that using different, phoneme-

specific mappings Of course, the mapping should change for different



phonemes. Hence, we would have a piecewise linear approxima-

tion for the observation model. As a prior model for the dynam-

ics of the articulatory parameters, an HMMs is used. Articulator

dynamics are in general expected to be phoneme-dependent and

so we have one HMM for each phoneme and one articulatory-

to-audiovisual mapping for each state. Further, as in audiovisual

speech recognition [8] we assume that the audio and visual cues

form two separate streams ya and yv correspondingly which are

weighted differently when determining the HMM c output probability,

p(c|y) ∝ N(ya; mc,a, Σc,a)waN(yν ; mc,νΣc,ν)wν . We accept that

the weights wa and wν should sum to one. The distribution of the

articulatory parameters at each HMM state is Gaussian. A separate

linear mapping y = Wjx + ǫj is considered at each state.

Speech inversion involves finding the optimal state sequence given

the audiovisual data and then for each state-aligned analysis frame

estimate the corresponding articulatory parameters as in Eq.3, ex-

ploiting the state-specific linear mapping. The state sequence is found

by the Viterbi algorithm using the audiovisual data in two properly

weighted streams. HMM training is performed in the conventional

way by likelihood maximization [6]. Given the occupation proba-

bilities at each state, the linear mappings between audiovisual and

articulatory data are estimated by means of reduced-rank canonical

correlation analysis.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Database Description For our experiments we have used the

QSMT dataset made available by O. Engwall and described in detail

in [7]. This dataset contains simultaneous measurements of the audio

signal, tongue movements and facial motion during speech. In short,

apart from the audio signal which is sampled at 16kHz, each frame

of the dataset (at the rate of 60 fps) contains the 3D coordinates of 25

reflectors glued on a speaker’s face (75-dimensional vector x), as well

the 2D mid-sagittal plane coordinates of 6 EMA (Electromagnetic

Articulography) coils glued on the speaker’s tongue, teeth and lips

(12-dimensional vector y), comprising in total around 65000 data

pairs (xt, yt). These correspond to one repetition of 138 symmet-

ric VCV (Vowel-Consonant-Vowel) words and 178 short everyday

Swedish sentences. All data are temporally aligned and phoneme-

level transcriptions are included as well. The data aqcuisition setup

is shown in Fig. 1. The three points on the top of the face are used

to compensate for head movement and the coils on the upper lip and

upper incisor are used to align visual and EMA data.

Global CCA based reduced rank linear model experiment We

present first an experiment that demonstrates the potential for im-

proved performance of the reduced-rank linear mapping, relative to

the conventional multivariate regression model. The goal of the exper-

iment is to predict the tongue configuration x from the corresponding

face expression yν by means of a globally linear model. We have

split the dataset into training and testing parts; we estimate second-

order statistics on the training set and compute from them either

the linear regression matrix W or its reduced-order variants Wr ,

r = 1, . . . , 12, from Eqs. (4) and (7), respectively. Note that for this

dataset W = Wk, with k = 12.

The left column of Fig. 2 depicts the prediction error of the

model when computing the tongue’s articulation y from the face

expression x for varying order r; each row in the figure corresponds

to a different training set size N = 1000, 5000, 50000 samples.

We observe that for small training set sizes, N = 1000, 5000, the

reduced-order models Wr with r = 5 or 6 generalize better than the

full-rank model with W = W12. Even for the case of big training

set with N = 50000 samples, although then the full-order model

performs best, reduced rank models with r ≥ 7 perform almost as

well. Similar comments can be made about the reverse experiment in

which we predict the face expression x from the tongue’s articulation

y, whose results are depicted in the right column of Fig. 2. These

results are particularly relevant and encouraging for the integration of

the CCA-based reduced-rank approach with the HMM-based system

described in Subsec. II, which incorporates individual regressors for

each HMM-state, and thus the effective training data corresponding

to each model are very few.
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Fig. 2. Generalization error of the linear regression model vs. model order for
varying training set size. Left column: Tongue position from face expression.
Right column: Face expression from tongue position.

Audiovisual-to-articulatory inversion experiments Next we give

our experiments in audiovisual speech inversion. To represent the

speech signal we use 16 MFCCs. They are extracted from 35-ms

preemphasized (coefficient: 0.97) and Hamming windowed frames

of the signal, at 60Hz, to match the frame rate at which the visual

and EMA data are recorded. The 0-th coefficient is excluded. From

the face, all the 3D coordinates of the 25 reflectors are utilized. On

the articulatory side, we use the 2D coordinates of the 3 coils on the

tongue (tip, blade, dorsum) and the coil on the lower incisor. The

data have been centered by mean subtraction. For training, we have

randomly selected 90% of the utterances and testing is performed

on the rest 10%. To evaluate the obtained results we have estimated

both the RMS difference between the original x and the estimated

x̂ trajectories as well as the Pearson product-moment correlation

coefficient, ρxx̂ = tr(E[xx̂T ])/
p

tr(E[xxT ])tr(E[x̂x̂T ]).

We have built models to recover articulatory trajectories either

from acoustic and facial data separately or from both combined.

Results are summarized in Fig. 3. The correlation coefficient and

the RMS error for the predicted trajectories are shown for increasing

number of HMM states. One left-right HMM per phoneme and two

separate for silence and breath have been trained. Initially, full order

linear mappings are trained at each state. The results at zero states

correspond to global linear models and are included for comparison.

In general, audiovisual-to-articulatory inversion outperforms either
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Fig. 3. Correlation coefficient and RMS Error between original and predicted
articulatory trajectories for increasing number of HMM states using video
only, audio only and both. Zero states correspond to the case of a global
linear model.

single-modality inversion. Further, it should be noted that even the

simplest time-dependent piecewise linear approximation achieved by

only single-state phoneme HMMs is importantly more effective than

the global linear model. This holds especially for the single audio

modality and it could be justified by the fact that the mapping between

acoustic and articulatory data is expected to be highly nonlinear. The

observation that the single visual modality performs better than audio

has been made in previous studies as well [4].

To focus on the audiovisual case, there are a few interesting issues

that should be brought up. Though we have applied multi-stream

HMMs the stream weights are not involved in the linear models

trained at each HMM state. These are trained using the concatenated

audiovisual feature vectors and the corresponding EMA feature vec-

tors at the particular state. The stream weights are essentially applied

only for the determination of the optimal HMM state sequence via

the Viterbi algorithm. This process is actually an alignment and not a

recognition process, as we consider that the phonemic content of each

utterance is known. It is based only on the audiovisual and not on

the articulatory data. For the results presented in Fig. 3 equal stream

weights have been applied. We have found however that performance

may be even better in case the alignment is performed using only

the audio features, that is if we assign a zero weight to the visual

stream. In this case we have found correlation coefficient equal to

0.69 for both the single and the 2-state HMMs with the former giving

a slightly lower RMS prediction error, 2.16mm vs. 2.17mm. This

observation is in accordance with similar experience in audiovisual

speech recognition for audio-noise free experiments [8]. The audio

should be exclusively trusted for recognition when no noise is present.

In our audiovisual-to-articulatory inversion setup it appears that in

the absence of audio noise, the audio stream should be trusted for

alignment but, given the optimal state alignment, the contribution of

the visual modality in inversion is very important in any case.

Interestingly, we have also observed that by using reduced-order

models at each HMM state by means of CCA we could in general

achieve similar or even slightly better performance compared to the

full-order models. To be more specific, the smallest RMS prediction

error 2.14mm was achieved using 1-state HMMs with 6th-order

linear models (the original order was 8). The 2-state HMMs with 6th-

order linear models at each state performed identically. An example

of predicted trajectories against the measured ones is shown in Fig.4

for a Swedish phrase. The corresponding RMS error is 1.97mm.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a statistical framework based on multi-stream

HMMs and CCA to perform audiovisual to articulatory speech

inversion. Experiments have been carried out on the QSMT dataset to

recover EMA coil movements from face motion and speech acoustics.
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Fig. 4. Measured (black) and predicted (light color) articulatory trajectories.

The results demonstrate clear improvement compared to the simple

global linear model mapping audiovisual to articulatory parameters,

that had been used in earlier works in the area. Reducing the order of

the linear model at each HMM state by CCA was beneficial as well

but the full benefits are expected to be unveiled in a more detailed

phoneme-based analysis that is currently in progress. In addition,

modifications concerning continuity and more detailed imposition of

dynamic constraints, e.g. related to coarticulation, would be as well

interesting. For example, in [6], it is shown that further improvements

may be expected if the used representations are enriched by parameter

derivatives and accelerations and biphone instead of single-phone

models are applied. Last but not least, in the proposed framework, we

plan to elaborate on the fusion of the modalities at the state-level, and

see how this differs from the linear model involving the concatenated

audio-visual feature vector we have used here.

Acknowledgements This research was co-financed partially by

E.U.-European Social Fund (75%) and the Greek Ministry of

Development-GSRT (25%) under Grant ΠENE∆-2003E∆866, and

partially by the European research project ASPI under Grant FP6-

021324. We would also like to thank O. Engwall from KTH for

providing us the QSMT database.

REFERENCES

[1] H. Kjellstrom, O. Engwall, and O. Balter, “Reconstructing tongue
movements from audio and video,” in Interspeech, 2006, pp. 2238–2241.

[2] O. Engwall, “Introducing visual cues in acoustic-to-articulatory inver-
sion,” in INTERSPEECH, 2005, pp. 3205–3208.

[3] J. Jiang, A. Alwan, P. A. Keating, E. T. Auer Jr., and L. E. Bernstein,
“On the relationship between face movements, tongue movements, and
speech acoustics,” EURASIP Journal on Applied Signal Processing,
vol. 11, pp. 1174–1188, 2002.

[4] H. Yehia, P. Rubin, and E. Vatikiotis-Bateson, “Quantitative association
of vocal-tract and facial behavior,” Sp. Comm., vol. 26, pp. 23–43, 1998.

[5] K. Richmond, S. King, and P. Taylor, “Modelling the uncertainty in
recovering articulation from acoustics,” Computer Speech and Language,
vol. 17, pp. 153–172, 2003.

[6] S. Hiroya and M. Honda, “Estimation of articulatory movements from
speech acoustics using an hmm-based speech production model,” IEEE

TSAP, vol. 12, no. 2, pp. 175–185, March 2004.
[7] O. Engwall and J. Beskow, “Resynthesis of 3d tongue movements from

facial data,” in EUROSPEECH, 2003.
[8] S. Dupont and J. Luettin, “Audio-visual speech modeling for continuous

speech recognition,” IEEE Tr. Multimedia, vol. 2, no. 3, pp. 141–151,
2000.

[9] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. Acad.
Press, 1979.

[10] L. L. Scharf and J. K. Thomas, “Wiener filters in canonical coordinates
for transform coding, filtering, and quantizing,” IEEE TSAP, vol. 46,
no. 3, pp. 647–654, 1998.

[11] L. Breiman and J. H. Friedman, “Predicting multivariate responses in
multiple linear regression,” Journal of the Royal Stat. Soc. (B), vol. 59,
no. 1, pp. 3–54, 1997.


