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Abstract

The large corpus of real time magnetic resonance image se-
quences of the vocal tract during speech production that was re-
cently acquired and can be referred to as MRI-TIMIT, provides
us with a unique platform for systematically studying articula-
tory dynamics. Compared to previously collected articulatory
datasets, e.g., using articulography or X-rays, MRI-TIMIT is
a rich source of information for the entire vocal tract and not
only for certain articulatory landmarks and further has the po-
tential to continue increasing in size covering a large variety of
speakers and speaking styles. In this work, we investigate an
articulatory representation based on full vocal tract shapes. We
employ an articulatory recognition framework in MRI-TIMIT
to analyze its merits and drawbacks. We argue that articulatory
recognition can serve as a general validation tool for real-time
MRI based articulatory representations.

Index Terms: vocal tract shape, articulation, real-time MRI,
articulatory recognition

1. Introduction

The selection of an appropriate real data-driven vocal tract rep-
resentation is dependent both on the needs and specificities of
a particular speech production study but also, to a significant
degree, on the flexibility allowed by the amount and variabil-
ity of the available data. For example, Mermelstein in [1] pre-
sented a parametric, geometric vocal tract shape model that was
based on roughly 300 mid-saggittal x-ray tracings. Not exactly
data-driven, the model was manually fitted to the real data and
then used for articulatory speech synthesis. Maeda in [2] ap-
proached the problem in a statistical manner, i.e., using guided
principal component analysis, and developed a full vocal tract
shape model based on the manually annotated, X-ray based vo-
cal tract tracings for 10 French utterances by a single speaker.
This model has been used for articulatory synthesis, speech in-
version and other articulatory studies. Despite their success,
admittedly both these models are constrained by the fact that
they are based on only very few articulations.

Such constraints are partially removed when we con-
sider representations based on Electromagnetic Articulography
(EMA) speech production data, which have been made avail-
able in significant amounts more recently. However, these rep-
resentations can only account for specific critical points on the
articulatory system and do not describe the entire vocal tract
shape. So, they may be appropriate for studying articulatory
kinematics or speech inversion but they can not easily be used
for speech synthesis, for example. In our work, we present yet
another vocal tract representation, this time based on a signifi-
cant number of real-time Magnetic Resonance Image sequences
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of mid-sagittal vocal tract profiles. The proposed representation
accounts for the entire vocal tract shape, is derived in a fully
automatic manner and is validated via articulatory recognition.

More specifically, we develop a statistical deformable vocal
tract shape model based on automatically extracted vocal tract
outlines from the real-time upper airway MRI recordings of
460 phonetically-balanced TIMIT utterances by a single male
speaker. A discriminative shape representation is also derived
using linear discriminant analysis. Compared to other statisti-
cally derived vocal tract shape models the presented model is
uniquely combining the two following properties:

1. It is not based on any vocal tract specific reference grid,
as, e.g., the semi-polar grid used in [2] .

2. It is estimated in a fully automatic manner and is not
based on manually annotated vocal tract contours as is
the case in [3, 2].

Further, it is the first time a vocal tract shape model is built on
so many and so variant articulations. A similar model based on
MRI images in [3] was only built on 25 MRI frames, i.e., corre-
sponding to a dataset of portuguese phonemes acquired via sus-
tained articulations, while in our case we have roughly 30000
vocal tract shapes corresponding to continuous articulations.

Typically, validation of shape models is achieved by com-
parison of reconstructed shapes with manually annotated out-
lines of the original vocal tract shapes. In our case, we only have
automatically extracted vocal tract contours available, since,
given the nature and amount of the original data, manual anno-
tation is not possible. Comparison of the reconstructed shapes
with possibly not fully accurate vocal tract contours may be
misleading however. So, we validate the resulting shape repre-
sentations by articulatory recognition experiments. The hypoth-
esis is that the proposed vocal tract representation can success-
fully capture the critical shape properties of the vocal tract dur-
ing speech production and discriminate between different types
of articulation. We apply hidden Markov models for the artic-
ulatory recognition and are able to recognize sequences of dif-
ferent articulation types in continuous speech with almost 50%
accuracy.

2. Articulatory representations
2.1. Articulatory corpus

For our experiments we use the real-time MRI recordings of
460 TIMIT utterances by one male, native American English
speaker. These data were collected as part of a larger paral-
lel audio-articulatory database, referred to as MRI-TIMIT [4].
Vocal tract images have been reconstructed at a framerate of
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Figure 1: Original vocal tract polyline desribed by the red cir-
cles and equidistantly resampled vocal tract contour described
by blue ’x’ markers. Resampling was performed to cope with
the “point correspondence” problem. The points are in pixel
coordinates. The size of the original image is 68 x68 pixels
(200mm x200mm field of view)

23.18Hz. In our current work we focus on only one of the four
speakers in the database.

2.2. Vocal tract outlines

We extracted the vocal tract outlines from the images using
the segmentation algorithm described in [5]. Each outline is
formed by three separate contours delineating the lower, up-
per and back parts of the vocal tract respectively. The lower
part includes the tongue, lower lip and epiglottis, the upper part
includes the upper lip, hard palate and velum while the back
part corresponds to the pharyngeal wall and the larynx. Each
contour is essentially represented by a dense ordered set of M
points C' = (x1,x2, ... ) Where consecutive points are con-
nected by a line segment. By concatenating the Cartesian coor-
dinates of these points we can describe each contour by a 2M -
dimensional shape vector s.

Our goal is to build a point distribution model [6] to de-
scribe the vocal tract deformations during speech production.
This model will indirectly capture how the shape changes based
on the joint statistical properties of the vocal tract points. To re-
liably estimate these statistics from a representative set of con-
tours, i.e., a training set of shape vectors, it is important to es-
tablish a correspondence between the points describing differ-
ent contours. This is the so-called correspondence problem [7,
Chap. 4]. This is often solved by meticulous manual annotation
of specific landmark points on the training shapes. However,
identifying landmarks on certain parts of the vocal tract, e.g., the
tongue, that is homogeneous and its length may vary in a non-
uniform manner, is not straightforward. We tried to minimize
the related implications by densely and equidistantly sampling
each contour with a fixed number of points, always starting from
a point which can be relatively robustly identified on the images,
e.g., apoint on the tip of the chin. At a final preprocessing stage,
we compensate for possible rigid head movement of the speaker
during the recordings by properly aligning the shape vectors via
an iterative application of the iterative closest point method [8]
implementing a modified version of the alignment algorithm in

[6].
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Figure 3: Cumulative ratio of the total variance explained by
the principal components of the shape model.

2.3. Statistical deformable vocal tract model

Given the aligned set of IV vocal tract shape vectors we can
build a point distribution model using principal component
analysis [6]. We estimate the mean vocal tract shape:

1 &
s=+ > s 6
i=1
and the corresponding covariance matrix .S:
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The major modes of shape variation are described by the eigen-
vectors of S [6]. The first four vocal tract eigen-shapes are
shown in Fig.2 . The mean shape is in solid line. The
dashed lines describe the effect of the eigenmodes when they
are weighted by three different values. So, each shape can be
approximated as:

s~S§+ Pb 3)
where P is a matrix formed by a reduced number of eigenvec-
tors/principal components and b is a weight vector. Our anal-
ysis showed that 90% of the variance can be explained by 35
principal components. The cumulative ratio of the total vari-
ance explained with the inclusion of increasing number of com-
ponents is given in Fig 3. So, each shape can be quite accu-
rately represented by the corresponding 35-dimensional weight
vector. This vector will be:

bpca = PT(s —5). 4)

An alternative representation can be obtained using linear
discriminant analysis. We aim at a vocal tract representation
of reduced dimensionality that would preserve as much of the
discriminative information among classes of shapes as possible.
In our current exploratory study, our classification is based on
phonetic classes. Essentially, we assume that we have a separate
class of vocal tract shapes for each phoneme. For a specific
vocal tract shape, the resulting description will be:

bLDA = WTS (5)

The optimal projection matrix W, assuming unimodal Gaussian
distributions for each class can be found via linear discriminant
analysis [9, Sec. 3.8.3], by maximizing the ratio of between-
class to within-class scatter.

The derived statistical models and the corresponding vocal
tract contours are available online at http://sipi.usc.
edu/~nkatsam. and will also become available as part of
the MRI-TIMIT database.
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Figure 2: First four eigenshapes as estimated by principal component analysis on approximately 30000 aligned vocal tract shapes. The
three dashed lines for each component correspond to the component weights being equal to plus one, minus one and plus two standard

deviations of the respective eigenvalues.

3. Articulatory recognition using HMMs

By articulatory recognition we refer to the identification of a
sequence of phonemes based on the corresponding sequence of
vocal tract shapes. The term “phonemes” in this context refers
to the corresponding articulatory configurations. For example,
a vocal tract shape with a labial closure and a velopharyngeal
opening would be recognized as the articulatory configuration
for the phoneme /m/. Such experiments have been reported for
articulatory data (EMA) in the past mainly as part of speech
recognition studies that exploit articulatory information, e.g., in
[10].

For the recognition experiments, the vocal tract shape pa-
rameters for the sequences of magnetic resonance images are
based on the models described above and are resampled at
100Hz. We built 3-state ergodic HMM models, trying to have
one for each type of articulation that we expect to be discrim-
inable by the corresponding vocal tract shaping. The choice of
the number of states was made empirically, mainly motivated
by the conventional approach followed in speech recognition.
Roughly, we train one articulation model for each phoneme,
with the exception of pairs of phonemes like /p/ and /b/, /t/
and /d/ that only differ in terms of voicing and we wouldn’t
expect them to be discriminable in terms of vocal tract shape
differences. Each of these pairs of phonemes, six in total, were
grouped together. So, our recognition system is based on 30
models, including one for silence.

Our models are continuous density hidden Markov mod-
els with state observation probability distributions described by
Gaussian mixture models (GMMs). Each Gaussian component
is described by the corresponding mean vector and a diagonal
covariance matrix. The number of Gaussian components was
fixed to four. This increased model complexity per state is ex-
pected to allow capturing coarticulation effects. It would be too
strict to just assume unimodal shape probability distributions
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per state for each phoneme. A diagonal matrix is chosen based
on the fact that our shape features are expected to be largely
decorrelated. The models are trained using HTK [11]. We fol-
lowed a standard three-step training process.

1. Initialization of the models using the timed phonetic
transcriptions of the training sequences. Timed tran-
scriptions were originally generated by Viterbi-based
forced alignment of the synchronously recorded acous-
tic data with the corresponding text. The parameters of
each phoneme articulation model are initialized by the
global statistics of the shape parameters over all the cor-
responding segments. Each model’s parameters are up-
dated separately in an iterative fashion. In each iteration,
the Viterbi algorithm provides an alignment of the model
with the corresponding segments. Each state’s parame-
ters are updated by pooling together the data assigned to
that state and estimating their statistics.

2. Baum-Welch reestimation of each model’s parameters
separately. Again, the parameters are updated iteratively.
This time, the Baum-Welch algorithm is applied in each
iteration instead of the Viterbi.

3. Final composite model training. For each training se-
quence a composite model is created by concatenating
all the models found in the corresponding transcription.
The standard Baum-Welch algorithm is then applied to
update all the parameters. The process is repeated till
convergence, i.e., till the change of model likelihood
given all the data between two consecutive iterations is
negligible.

It should be noted that although the timed phonetic transcrip-
tions are used for the initialization of the articulatory models, in
the final training step this constraint is removed. So, the artic-
ulatory models are allowed to be asynchronously aligned with
the corresponding acoustics, as it would be intuitively expected.



A model representing the articulation of /k/ for example may be
activated earlier than the point when the corresponding sound
becomes apparent in acoustics.

We randomly split our data in 95%-5% training and test-
ing parts and we repeated our experiments 10 times. We report
the average recognition accuracy over these repetitions. The
shape models were also developed on the same training set each
time. We experimented with both the Principal Component and
the Linear Discriminant Analyses-based features and the cor-
responding results are ginen in Table 1. We also give results
obtained with image intensity-based Discrete Cosine Transform
features (100 features were used). DCT results serve as a more
generic baseline that does not use any explicit shape informa-
tion. The accuracy achieved with the LDA-based features is
similar to that of the PCA-based features. Overall, the articu-
lation recognition accuracy shows that our fully automatically
derived shape models and the temporal modeling imposed on
top of them via the hidden Markov models can capture signifi-
cant part of the articulation variation during continuous speech
production.

Table 1: Recognition accuracy (%) of articulatory types using
shape-model based parameters. The model has been built ei-
ther using Principal Component Analysis of a Point Distribu-
tion Model or using Linear Discriminant Analysis. The result
based on intensity-based DCT features is also given.

Articulatory recognition accuracy
intensity DCT 31.2%
shape PCA 47.3%
shape LDA 49.4%

4. Discussion and future work

We presented a statistical deformable vocal tract shape model
developed in a fully automatic manner from the real-time mag-
netic resonance recordings of the vocal tract of a speaker while
uttering 460 utterances. These data are part of larger audio-
articulatory database that is currently been acquired and is
known as MRI-TIMIT [4]. The described shape model is es-
sentially trained on more than 30000 automatically derived vo-
cal tract outlines. It is the first time that a vocal tract shape
model is built on so many and so variant articulations.
Compared to previously presented vocal tract models that
are based on similar approaches but were trained on different
and much smaller datasets our current model appears to 1) in-
clude a much higher number of components and 2) to explain
variations that are not necessarily relevant to speech produc-
tion. For example, the first component appears to describe mo-
tion of the upper lips and at the same time shrinkage of the
velum, which could be argued to be unrealistic. These observa-
tions most probably can be attributed to contour tracking errors.
As mentioned earlier, the proposed approach is fully automatic
and is based on the vocal tract shapes that are extracted by an
automatic contour tracking algorithm. By a simplistic outlier
detection mechanism we managed to identify a large propor-
tion of erroneous vocal tract contours and we excluded them
from our analysis. However, we haven’t yet been able to ver-
ify and ensure the correctness of all the shapes that are finally
included. We are currently working on a semi-automatic ap-
proach towards this direction. More specifically, our goal is
to incrementally train the vocal tract shape model so that only
acceptable training shapes are used and possibly noisy observa-
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tions are cleaned up using the already trained model.

We validate the derived vocal tract representation via artic-
ulatory recognition experiments based on hidden Markov mod-
els. Using the proposed scheme we are able to achieve artic-
ulatory recognition accuracy close to 50%. This effort is part
of our ongoing work to establish rich and flexible articulatory
representations that can be automatically derived or adapted to
real-time articulatory data. We would like to devise a repre-
sentation that would allow us to robustly exploit these data in a
computational manner and in a way that could potentially also
inform and be informed by related speech production theories.

In this direction, we plan to extend our shape model to mul-
tiple speakers. For this purpose we are also investigating al-
ternative representations that would probably be less speaker-
dependent. The articulatory recognition framework we have de-
scribed will be our validation platform. Further, we investigate
ways to use the statistical shape model in the vocal tract contour
tracking as well, in a properly adapted Bayesian framework, as
for example the one presented in [12] for tongue tracking in
ultrasound images.
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