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Abstract. Analysis of audiovisual human behavior observations is a
common practice in behavioral sciences. It is generally carried through
by expert annotators who are asked to evaluate several aspects of the
observations along various dimensions. This can be a tedious task. We
propose that automatic classification of behavioral patterns in this con-
text can be viewed as a multiple instance learning problem. In this pa-
per, we analyze a corpus of married couples interacting about a problem
in their relationship. We extract features from both the audio and the
transcriptions and apply the Diverse Density-Support Vector Machine
framework. Apart from attaining classification on the expert annota-
tions, this framework also allows us to estimate salient regions of the
complex interaction.

Keywords: multiple instance learning, support vector machines, ma-
chine learning, behavioral signal processing

1 Introduction

Behavioral observation is a common practice for researchers and practitioners
in psychology, such as in the study of marital and family interactions [1]. The
research and therapeutic paradigm in this domain often involves the collection
and analysis of audiovisual observations from the subject(s) in focus, e.g., cou-
ples or families. Meticulous evaluation of these observations is critical in this
context and is usually performed by carefully trained experts. Guidelines for
this evaluation are typically provided in the form of coding manuals, which are
often customized for a particular domain; for example, the Social Support Inter-
action Rating System (SSIRS) was created to code interactions between married
couples [2]. These manuals aim at standardizing and expediting the coding pro-
cess, which unfortunately can still remain laborious, resource-consuming, and
inconsistent [1].

In our recent work [3, 4], we argued that the application of appropriate signal
processing and machine learning techniques has the potential to both reduce the
cost and increase the consistency of this coding process. We introduced a frame-
work to automatically analyze interactions of married couples and extract audio-
derived behavioral cues. These low- and intermediate-level descriptors were then
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shown to be predictive of high-level behaviors as coded by trained evaluators.
Building on this research, we are currently focusing on detecting salient portions
of the voluminous, possibly redundant observations. This would enable us to
better model the dynamics of the interaction by identifying regions of particular
interest. In this direction, we formulate the automatic behavioral coding problem
in a multiple instance learning setting and demonstrate the resulting benefits.

Multiple instance learning (MIL), in machine learning terms, can be regarded
as a generalized supervised learning paradigm, in which only sets of examples,
and not single examples themselves, are associated with labels. The examples are
referred to as “instances,” while the labeled sets are called “bags” [5]. Conven-
tionally, a negatively labeled bag is assumed to contain only negative instances,
while a positive bag should contain at least one positive instance. It is illustrative
to consider the problem of object detection in images from this MIL perspective
[6]. In most cases, image labels will only indicate whether an object exists or not
in the image and will not provide information about its exact location. In MIL
terminology, the image is the bag, and the various objects in the image are the
instances. The image/bag will contain the requested object, i.e., be positively
labeled, if at least one of the instances is indeed the requested object, i.e., is
positive. Apart from object detection, MIL has been successfully applied in do-
mains such as text and image classification [7–9], audio classification [10], and
more recently in video analysis for action recognition [11].

In this paper, we argue that the MIL paradigm is well-suited for the auto-
matic processing of behavioral observations, collected for the purpose of research
in behavioral sciences like psychology. We properly adjust and employ the basic
technique introduced in [8], which is known as Diverse Density Support Vector
Machine and presented in detail in Sec. 2.2. In Sec. 2.3, we discuss the low-level
lexical and intonation features that we extract from the corpus of married couple
interactions (described in Sec. 2.1). In Sec. 3, we show significant improvement in
predicting high-level behavioral codes using this MIL technique, which also has
the advantage of simultaneously attaining saliency estimates for the observation
sequences. We conclude in Sec. 4 with a discussion about ongoing work.

2 Proposed approach

2.1 Corpus

Our current research focuses on a richly annotated audiovisual corpus that was
collected as part of a longitudinal study on couple therapy at the University
of California, Los Angeles and the University of Washington [12]. The study
involved 134 seriously and chronically distressed married couples that received
couple therapy for one year. The corpus comprises 574 ten-minute dyadic in-
teractions (husband and wife), recorded at different times during the therapy
period. During these sessions, the couple discussed a problem in their relation-
ship with no therapist or research staff present. The recordings consist of a single
channel of far-field audio and a split-screen video. No specific care was taken to
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standardize the recording conditions since the data were not intended for au-
tomatic processing. Word-level transcriptions for each session exist, which have
allowed us to process the lexical content of the recordings without having to
apply automatic speech recognition. A more detailed overview of the corpus can
be found in [3].

For each session, both spouses were evaluated with 33 session-level codes from
two coding manuals that were designed for this type of marital interaction. The
Social Support Interaction Rating System (SSIRS) measures both the emotional
features and the topic of the conversation [2]. The Couples Interaction Rating
System (CIRS) was specifically designed for conversations involving a problem
in the relationship [13]. Three to four trained evaluators coded each session, i.e.,
provided one set of 33 codes for each spouse, and all codes had written guidelines
and were on an integer scale from 1 to 9.

Due to low inter-evaluator agreement for some codes [3], we only chose to
analyze the six codes with the highest inter-evaluator agreement (correlation co-
efficient higher than 0.7): level of blame and level of acceptance expressed from
one spouse to the other (taken from the CIRS), global positive affect, global
negative affect, level of sadness, and use of humor (taken from the SSIRS). Fur-
thermore, similarly to what was done in our previous work [3], we framed the
learning problem as a binary classification task. That is, we only analyzed ses-
sions that had mean scores (averaging across evaluators) that fell in the top 25%
and bottom 25% of the score range, i.e., approximately 180 sessions per code. In
contrast with our previous studies, we select the extremely scored sessions in a
gender-independent manner. The session-level code values are hereafter referred
to as “low” and “high.” Thus, instead of trying to predict, for example, the nu-
merical level of blame for a spouse in a given session, we are trying to predict
whether the level of blame for that spouse is low or high. For this work, we will
be using only observations from the coded spouse and not his/her partner.

2.2 MIL using Diverse Density SVMs

Diverse Density Support Vector Machines (DD-SVMs) were originally intro-
duced for image retrieval and classification [8]. We discuss how this approach
can also be of merit for the problem of automatic analysis of behavioral observa-
tions. Let B = {B1, . . . , Bm} be the set of sessions and Y = {y1, . . . , ym} be the
corresponding set of session labels for one particular code; yi ∈ {−1, 1} is the ith

session label (low or high). Based on the coding manuals [13, 2], session-level be-
havioral evaluation is based on the presence/absence of one or more events that
occur during the interaction. For example, the level of sadness for a spouse may
be judged as high if he/she cries, and the level of acceptance is low if the spouse
is consistently critical. Here, we assume that each session can be represented as a
set of behavioral events/instances, e.g., crying, saying “It’s your fault”. More for-
mally, Bi = {Bi1, . . . , BiNi

}. Since we do not have explicitly labeled instances in
our corpus, we need to come up with a method to label instances and determine
their relevance with respect to the six codes we are analyzing.
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Diverse density to select instance prototypes In the MIL paradigm, one
can intuitively expect that the instance labels can be found by exploiting the
entire set of instances and labeled bags. This can be accomplished by comparing
the frequency count of an instance across the low vs. high sessions. For example,
an instance that only appears in low-blame sessions can reasonably be regarded
as low-blame, while an instance that appears uniformly in all sessions cannot be
regarded as blame-salient. In practice, given that each instance is represented by
a noisy feature vector, the direct implementation of the above idea will typically
lead to poor performance. In addition, one has to take into consideration the fact
that an instance may not appear identically in two different bags. The so-called
“diverse density,” which was introduced in [5], circumvents these difficulties by
making proper assumptions on the probability distributions of both the instances
and the bags. For a vector x in the instance feature space, diverse density is
defined in [8] as:

DD(x) =

m
∏

i=1





1 + yi

2
− yi

Ni
∏

j=1

(1 − e−||Bij−x||2)



 , (1)

where Bij is the feature vector corresponding to a certain instance. Instances that
are close to instances in the high-rated sessions (yi = 1) and far from instances
in the low-rated sessions (yi = −1) have a high diverse density and are assumed
to be more salient for high values of the code. Following [8], we can then find
local maxima of the diverse density function to identify the so-called instance

prototypes, i.e., salient instances for each code. By reversing the yi labels, we can
repeat the maximization process to identify the instance prototypes for the low
values of each code.

Distance metric to compute final features Having identified the set of
instance prototypes {x∗

1, x
∗
2 . . . x∗

M}, we can then represent each session Bi by a
vector of distances from each prototype [8]:
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Given this feature vector for each session, supervised classification can be per-
formed using conventional SVMs.

2.3 Feature extraction

In this work, the instance was defined as a speaker turn, which simplified the
fusion of lexical and audio features. We only used turns for which the temporal
boundaries were reliably detected via a recursive speech-text alignment proce-
dure [14].
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Lexical features Lexical information in each instance is represented by a vector
of normalized products of term/word frequencies with inverse document frequen-
cies (tfidf ) for a selected number of terms [15]. For a term tk that appears n times
in the document dj , and in total appears in Dtk

of the D documents, its tfidf

value in dj is computed as follows [16]:

tfidf(tk|dj) =

{

n log
D−Dtk

Dtk

, Dtk
6= D

0, Dtk
= D

(3)

In order to account for varying turn lengths, we further normalize the tfidf values,
so the feature vector has unit norm [15]:

tfidfn(tk|dj) =
tfidf(tk|dj)

√

∑W

s=1
tfidf(ts|dj)2

, (4)

where W is the number of turns in the instance. No stemming has been per-
formed [15]. Term selection is achieved using the information gain, which has
been found to perform better than other conventional feature selection tech-
niques in text classification [17–19]. Information gain is a measure of the “use-
fulness”, from an information theoretic viewpoint, with regards to the discrim-
inative power of a feature. For the binary classification case, i.e., classes c1 vs.
c2, the information gain G for a term tk can be estimated as follows [17]:

G(tk) = −

2
∑

i=1

Pr(ci) log Pr(ci)

+ Pr(tk)

2
∑

i=1

Pr(ci|tk) log Pr(ci|tk) + Pr(t̄k)

2
∑

i=1

Pr(ci|t̄k) log Pr(ci|t̄k), (5)

where t̄k represents the absence of the term tk. Terms with lower information
gain than a minimum threshold were ignored. The minimum threshold was set
so that only 1% of the terms were kept. The first 10 selected terms for the whole
corpus are given in Table 1, sorted by decreasing information gain for each
behavior. Interestingly, fillers like “UM” and “MM” and “(LAUGH)” appear to
have significant information gain for more than one behaviors.

Audio features For the representation of intonation extracted from the au-
dio, we use a codebook-based approach. Intonation information in each turn is
represented by a vector of normalized frequencies of “intonation” terms. These
terms are defined by means of a pitch codebook. This is built on sequences of
pitch values. Given the highly variable audio recording conditions and speaking
styles, the codebook allows us to filter our data and only account for prototypi-
cal intonation patterns. The audio feature extraction algorithm mainly involves
three steps:
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Behavior Informative words

acceptance UM, TOLD, NOTHING, MM, YES, EVERYTHING, ASK,
MORE, (LAUGH), CAN’T

blame NOTHING, EVERYTHING, YOUR, NO, SAID, ALWAYS,
CAN’T, NEVER, MM, TOLD

humor (LAUGH), TOPIC, GOOD, MISSING, COOL, TREAT,
SEEMED, TRULY, ACCEPT, CASE

negative TOLD, KIND, MM, MAYBE, NOTHING, UM, YOUR,
NEVER, CAN’T, (LAUGH)

positive UM, KIND, NOTHING, MM, GOOD, (LAUGH), TOLD,
CAN’T, MEAN, WHY

sadness ACTUALLY, ONCE, WEEK, GO, OKAY, STAND, CON-
STANTLY, UP, ALREADY, WENT

Table 1. Terms with the highest information gain for discriminating between extreme
behaviors.

1. Pitch and intensity estimation Raw pitch values are extracted from the
audio as described in [3] every 10ms. Non-speech segments are excluded by
applying voice activity detection [20]. Pitch values are automatically cor-
rected for spurious pitch-halving or doubling, and are then median-filtered
and interpolated across unvoiced regions. Finally, pitch f0 measurements are
speaker-normalized [3], i.e., f̂0 = f0 − f0µ, where f0µ is the mean speaker
pitch, estimated over the whole session.

2. Resampling and buffering The pitch signals are low-pass filtered and re-
sampled at 10Hz, i.e., we get one pitch value every 100ms. Each of these
values roughly corresponds to the duration of a single phoneme. Since we
expect informative intonation patterns to appear in a longer duration, ap-
proximately equal to the duration of at least two words, we group sequential
values of pitch inside a window of 1sec duration, to create 10-sample pitch
sequences. The window is shifted every 100ms.

3. Clustering and counting We cluster the resulting sequences using K-means.
Each sequence is then represented by the center of the cluster in which it
belongs. In analogy with the text representation, we consider the pitch clus-
ter centers to be our intonation terms and we estimate their frequency of
appearance in each turn.

The five most frequent occuring intonation terms are shown in Fig. 1.

3 Experiments

We compare the classification performance of the proposed approach with a con-
ventional SVM-based classification scheme. All our experiments are performed
using 10-fold cross-validation. The folds were determined in the set of couples
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Fig. 1. The five most frequently appearing intonation terms are shown. Each term is
defined as one of the 10 cluster centers to which 1-s long pitch sequence observations
were clustered using k-means. The appearance frequency of each term is given as a
percentage of the total number of pitch sequence observations.

and not in the set of sessions. In this way, we did not have any folds where a
session from a training couple would appear in the testing set. Binary classifi-
cation, i.e., “high” vs. “low”, accuracy results are given as box plots in Fig. 2
for three cases, namely when using lexical features with a standard SVM, when
using lexical features in the multiple instance learning scheme described earlier
and when intonation features are also used in the same setup. Lexical and into-
nation features are extracted as described in Sec. 2.3. The leftmost box in each
graph corresponds to the baseline, i.e., the standard SVM-based approach. The
central line on each box is the median, while the diamonds represent the mean
values. For the conventional SVM the session features were extracted over the
whole session and not separately for each speaker turn. Based on the mean values
and the overall distribution of the results for the 10 folds, there are two things
that can be noted, namely overall performance is improved when switching to
the MIL setup and the intonation features do not lead to further consistent
accuracy improvements.



8 A. Katsamanis, J. Gibson, M. Black, S. Narayanan

4 Conclusions and future work

We showed that the Multipe Instance Learning framework can be very useful for
the automatic analysis of human behavioral observations. Our research focuses
on a corpus of audiovisual recordings of marital interactions. Each interaction
session is expected to comprise multiple instances of behavioral patterns not
all of which are informative for the overall session-level behavioral evaluation of
an interacting spouse. By means of the so-called diverse density we are able to
identify salient instances that have significant discriminative power. Saliency is
defined with reference to a specific discrimination task each time. We demon-
strated improved performance when classification was only based on these salient
instances.

In the future, we plan to further elaborate on the saliency estimation aspect
of the proposed approach. Further, we would like to investigate alternative into-
nation and, in general, audio-based features that would help us more effectively
exploit the corresponding information in the proposed scheme.
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Fig. 2. Binary 10-fold cross-validated classification results for lexical and audio feature
sets using conventional SVMs or Diverse Density SVMs for six behavioral codes. The
central line on each box is the median, while the edges are the 25th and 75th percentiles.
The diamonds correspond to the mean values. The whiskers extend to the most extreme
fold accuracy values which are not considered outliers. Points that are smaller than
q1−1.5(q3−q1) or greater than q3 +1.5(q3−q1), where q1 and q3 are the 25th and 75th
percentiles respectively, are considered to be outliers and are marked with crosses.
The leftmost box in each graph corresponds to the conventional SVM classification
with lexical features while the central and rightmost boxes illustrate the results of
the MIL approach with lexical features only and joint lexical and intonation features
respectively.


