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Abstract

In this paper we present two extensions of a statistical frame-
work to demodulate speech resonances, which are modeled as
AM-FM signals. The first approach utilizes bandpass filtering
and a standard demodulation algorithm which regularizes in-
stantaneous amplitude and frequency estimates. The second
employs particle filtering techniques to allow temporal varia-
tions of the parameters that are connected with spectral charac-
teristics of the analyzed signal. Results are presented on both
synthetic and real speech signals and improved performance is
demonstrated. Both approaches appear to cope quite satisfacto-
rily with the nonstationarity of speech signals.

1. Introduction
“Speaking and hearing” machines is a prospect that is gaining
increasing popularity nowadays. Expectations of this kind seem
to be well justified by the rapid progress of speech technologies
in the last decade. At the same time however, in such a context,
it is obvious that research in the area is brought up against vari-
ous challenges. For example, robustness in adverse conditions,
e.g. in varying and noisy environments, is still an open issue.
The need to efficiently cope with such problems and the fail-
ure of approaches based on the traditional linear speech model
to provide a uniform solution, have motivated the exploration
of alternative speech representations. Such representations may
be used in speech recognition for extracting features that suc-
cessfully capture speech nonstationarity. Other potential appli-
cations are in speech enhancement or speech synthesis.

1.1. Previous work

In [1] Maragos et al. proposed modeling each speech resonance
as an amplitude and frequency modulated signal. Speech could
then be considered to be a sum of such signals:

y(k) =
X

i

αi(k)cos[φi(k)] (1)

This model has been inspired by related experimental evidence
and may account for the local nonstationarity of the speech sig-
nal. In [1] they also described the Energy Separation Algorithm
(ESA) and provided an initial framework to allow the extrac-
tion of instantaneous frequency (IF) and amplitude (IA) from a
mono-component AM-FM signal.

Based on the same model, Lu and Doerschuk [2], proposed
a statistical formulation of the IF and IA estimation of speech
resonances. They describe the dynamics of each resonance i by
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llowing state-space (time-update) equations:

αi(k + 1) = βαiαi(k) + qαiwαi(k) (2)

νi(k + 1) = βνiνi(k) + qνiwνi(k) (3)

fi(k + 1) = fi(k) + qfiwfi(k) (4)

Eq. 4, fi is the slowly varying part of the instanta-
frequency, that roughly corresponds to the widely ac-

d notion of formant frequency. It is modeled as random
In Eqs. 2 and 3, αi is the instantaneous amplitude and

the frequency modulating signal of the resonance. They
appear as first order autoregressive (AR) processes. Their
r and bandwidth may be controlled independently by the
eters qαi , qνi and βαi , βνi respectively. The observation
urement-update) equation is:

y(k) =

KX
i=1

αi(k) cos(ϕi(k)) + ru(k) (5)

y is the observed signal and K is the number of reso-
s. In Eq. 5 ϕi is the instantaneous phase of the resonance
an be readily expressed in terms of fi and νi as:

ϕi(k) = ϕi(0) + 2π Ts

k−1X
m=0

[fi(m) + νi(m)] (6)

Ts is the sampling frequency. The signals

i , wνi , wfi are independent, identically distributed
1) stochastic processes. The parameter vector

(βαi , βνi , qαi , qνi , qfi , u), i = 1 . . . K, is deter-
mainly by spectral analysis of the model. In [2], the

l Based Demodulation Algorithm (MBDA) is proposed
timate the instantaneous amplitudes and frequencies of
h signal using Extended Kalman Filtering (EKF) after
r initialization.
ther efforts to achieve decomposition of speech into mod-
components include [3, 6, 4, 5] . Potamianos et al. ap-

Gabor filterbank to isolate the resonances. Pai and Doer-
[6] also use bandpass signals and extend the work of [2].
nd Kumaresan [4, 5] estimate instantaneous modulations
on a different model for speech. From a different point

w, Vermaak et al. in [7], regard speech as a time varying
VAR) process in order again to account for its local non-

narity. They apply particle filtering methods and achieve
cement of the signal.

Contribution

contribution of our paper is twofold. Firstly, we en-
instantaneous amplitude and frequency estimation by in-

ly introducing constraints to the model (Eqs. 2-5) based



on a proper application of the Energy Separation Algorithm.
Secondly, we consider the model parameters {qαi , qνi} to be
slowly varying in time and we apply Particle Filtering methods
in order to achieve joint estimation of both state and parameters.
Both approaches allow the extraction of more robust estimates,
even in the case of inexact initialization or wide fluctuations of
the spectral properties of the speech signal.

The remainder of the paper is organized as follows: De-
tails concerning the first proposed model enhancement along
with some necessary background information and results are
presented in section 2. We elaborate on the second direction in
section 3. The paper ends with a discussion on the presented
approaches and future research directions.

2. Combining Gabor-ESA and MBDA

2.1. Gabor-ESA

The ESA may be applied to efficiently compute the instan-
taneous amplitude and frequency of an AM-FM signal y =
a(t) cos(ϕ(t)). However, when the signal contains more than
one modulated components, the algorithm does not apply di-
rectly. In such cases, the common approach is to isolate the
components by Gabor bandpass filtering and demodulate each
component separately [1]. However, for nonstationary signals,
positioning the Gabor filters in the frequency domain properly
is not straightforward.

2.2. Introducing Gabor-ESA in the state-space model

On the other hand, MBDA allows parallel extraction of the am-
plitude and frequency modulations, even for multicomponent
signals, without bandpass filtering. As a downside, thorough
experimentation with synthetic signals has demonstrated that
the estimates obtained in this way may be extremely sensitive to
the initial configuration of the Extended Kalman Filter (e.g. ini-
tial state, parameter choice) or spectral variations of the signal
and may diverge in the presence of outliers .

To improve performance we constrain αi and νi to evolve
closely to the corresponding initial estimates obtained by apply-
ing the ESA to each component separated by Gabor bandpass
filtering. Specifically, we modify the original model by consid-
ering two additional observation equations for each component:

yαi(k) = |αi(k)| + rαiuαi(k) (7)

yνi(k) = νi(k) + fi(k) + rνiuνi(k) (8)

The values yαi and yνi are pointwise-determined estimates of
the instantaneous frequency and amplitude of component i at
moment k. These are attained by applying the ESA to the out-
put of a Gabor bandpass filtered window of the signal centered
at moment k (Gabor-ESA). The Gabor filter is centered at fre-
quency f̂i(k|k − 1) which is the current estimate of frequency
fi as given by Eq. 4 (prediction estimate of the EKF). The
stochastic processes uαi and uνi are independent and normally
(N(0, 1)) distributed and represent possible uncertainty in the
validity of the Eqs. 7, 8. The amount of uncertainty accepted
may be imposed by suitably choosing the rαi and rνi parame-
ters.
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e 1: Instantaneous Amplitude and Frequency estimates for
ird component of the synthetic signal described in Sub-
n 2.3,(a) as obtained by the enhanced algorithm, (b) as
ed by the MBDA. The original amplitude and frequency

ls are superimposed in the figures by dash-dotted lines.

xperimental Results

ply the enhanced demodulation algorithm to the synthetic
ys(t) =

P3
i=1 yi(t), where:

t) = γi[1 + κi cos(2π fAM
i t)]

cos(2π

Z t

0

fci(τ) + fFM
i βi cos(2π fFM

i τ)dτ) (9)

component is both amplitude and frequency modu-
with κi, βi being the amplitude and frequency mod-

n indexes respectively.γ′
is are scaling factors, γ =

150 60
ď
. The values of the signal properties in Hz

fc =
č
375 2312 3250

ď
fAM =

č
80 90 150

ď
fFM =

č
120 120 120

ď

odel parameter vector θ has been determined using the
identification procedure described in [2]. The parame-

αi and rνi are set so that the estimates of ESA are trusted
for the less powerful components (2nd and 3rd) and much
r the strongest component (1st). For comparison, in Fig.

he instantaneous amplitude and frequency estimates of the
omponent as given by the MBDA are also presented. The
alized Mean Square Error (NMSE) is also displayed on
aphs. Superior performance of the proposed approach can
served.

Fig. 2, results of speech analysis for the second speech
ance of the phoneme /ee/ are also presented, along with the
ponding estimates of the MBDA. It is worth mentioning
nscented Kalman Filtering (UKF)[8] has also been tested
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Figure 2: Instantaneous Amplitude and Frequency estimates for
the second resonance of the phoneme /ee/, (a) as obtained by the
enhanced algorithm, (b) as obtained by the MBDA

as an alternative to EKF in these experiments with quite similar
results. An extensive presentation of experiments and results
may be found at: http://cvsp.cs.ntua.gr/∼nassos.

3. Particle Filtering for Varying Parameters
3.1. Modeling Parameter Variations

Allowing for time-varying model parameters is another promis-
ing approach in the effort to enhance demodulation of speech.
After spectral analysis of the speech representation in Eq. 5,
Lu and Doerschuk [2] connect the parameters qαi and qνi to
the formant power and bandwidth respectively. However, these
formant properties may vary significantly in an utterance and it
seems too restrictive to keep the relative parameters fixed.

In our approach, we allow slow variations of qαi and qνi .
As in [7] we assume that the logarithms of their squares λαi =
log q2

αi
, λνi = log q2

νi
evolve according to a first-order Markov

process fully specified by its initial state and state transition dis-
tributions:

p(λαi(0)) = N(2 log q0
αi

, δ2
λ0

αi
) (10)

p(λαi(k)|λαi(k − 1)) = N(λαi(k − 1), δ2
λαi

) (11)

p(λνi(0)) = N(2 log q0
νi

, δ2
λ0

νi
) (12)

p(λνi(k)|λνi(k − 1)) = N(λνi(k − 1), δ2
λνi

) (13)

The initial parameters q0
αi

and q0
νi

are chosen as indicated in [2]
and δλ0

αi
, δλαi

, δλ0
νi

, δλνi
are fixed at small values.

3.2. Particle Filtering

In order to achieve state estimation in case of varying parame-
ters it is common to augment the state vector with the parame-
ters and perform joint estimation based on the complete state-
space representation. The state-space system defined in this
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by Eqs. 2-5 and 10-13 is highly nonlinear, so, applying
KF or UKF for estimation is inadequate. As an alternative,
ggest applying Particle Filtering [9, 10] which allows the

sentation of the probability distributions of interest by a
er of properly sampled and weighted particles. The ad-
ge is that estimation and tracking become possible even
the assumed model is highly nonlinear or non-Gaussian.
owever, naive application of the generic Particle Filter,

s the Sequential Importance Sampling Algorithm, could be
cient mainly due to high dimensionality of the augmented
vector. The problem may be reduced if we exploit the fact
conditional on the parameters q, the state-space equations

assumed in the MBDA. Indeed, we may write:

x = (αi, νi, fi|i = 1 . . . K) (14)

q = (qαi , qνi |i = 1 . . . K) (15)

p(xk,q0:k|y1:k) = p(xk|q0:k, y1:k)p(q0:k|y1:k) (16)

ased on arguments similar to those presented in [7], we
use the initial model to get an estimate of the state x by
(as in MBDA), given an approximation of p(q0:t|y1:t).
an approximation is obtained by using Sequential Impor-
Sampling of the time-varying parameters [10]: We up-

he approximation in time by sampling from an importance
bility distribution π, resampling and then properly updat-
e weights w. The importance distribution and weights are

ed as:

π(qk|q0:k−1, y1:k) = p(qk|qk−1) (17)

w(q0:k) = w(q0:k−1)wk (18)

wt ∝ p(yk|q0:k, y1:k−1) (19)

umber of particles q
(i)
0:k drawn is N . An estimate of the

ented state is given by:

x̂k =

NX
i=1

w̃
(i)
0:kE

p(xk|q(i)
k

,y1:k)
{xk} (20)

q̂k =

NX
i=1

w̃
(i)
0:kq

(i)
k (21)

w̃
(i)
0:k � w(q

(i)
0:k)PN

j=1 w(q
(j)
0:k)

, i = 1, . . . , N. (22)

k|q(i)
k

,y1:k)
{xt} is estimated by EKF, conditional on the

ample q
(i)
k of the particle trajectory i.

o avoid noisy fluctuations of the time-varying parame-
nd possible instabilities caused by outliers in the obser-

sequence, we update the time-varying parameters ev-
observed samples. To improve robustness, we estimate
eight updating factor wk|L of a particle as the likeli-
of all L previously observed samples given the particle,

−L+1):k|q(i)

k|L). Every L observed samples, the estimates
states for every moment are finalized according to Eq.20

all the particle weights have been computed and before
pling.

Experimental Results

rmance of the particle filtering approach to demodulation
onstrated in Fig. 3 first for a random monocomponent
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Figure 3: The particle filtering approach tested on a random
synthetic signal. The number of particles used is N = 100 and
L = 100. (a) The reconstructed signal, (b)estimated instanta-
neous amplitude and frequency. Normalized mean square error
is also displayed.

amplitude and frequency modulated synthetic signal. This syn-
thetic signal has been generated based on the model with vary-
ing parametes. We systematically observed that for such sig-
nals the MBDA failed to track instantaneous amplitude and fre-
quency, while, with the proposed approach and the same initial-
ization, the estimates were accurate.

In Fig. 4(a), real speech analysis results are also given.
Instantaneous frequency estimates of four resonances are su-
perimposed on the spectrogram of the word “yell”. For com-
parison, estimates by the MBDA are given in 4(b). The lat-
ter estimates are worse in the sense that they exhibit erroneous
variations. For example, the estimate corresponding to the first
formant gets negative for a while. An extensive presentation of
experiments and results may be found at the website indicated
above.

4. Conclusions

In this paper, we present two directions along which the statis-
tical framework proposed in [2] for the demodulation of speech
exhibits improved performance. In the first approach, we com-
bine Gabor-ESA and a statistical framework, which results in
improved performance since robust estimates by the demod-
ulation algorithm are properly utilized by the tracking algo-
rithm. In the second approach, we allow time-variations of the
spectrum-related parameters of the model. To handle the re-
sulting complex model we apply particle filtering techniques,
similar to the ones presented in [7]. Representative results con-
cerning both synthetic and natural signals have been presented.
In our on-going work we plan to incorporate the proposed tech-
niques in speech recognition and speech enhancement applica-
tions and we expect them to facilitate robust speech processing
in adverse conditions.
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