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ABSTRACT

We are interested in recovering aspects of vocal tract'sngéy and

dynamics from auditory and visual speech cues. We apprdaech t
problem in a statistical framework based on Hidden MarkowdMo

els and demonstrate effective estimation of the trajessdollowed
by certain points of interest in the speech production systél-
ternative fusion schemes are investigated to account faorcasony
between the modalities and allow independent modeling etiix
namics of the involved streams. Visual cues are extractad the
speaker’s face by means of Active Appearance Modeling. \perte

T\u

experiments on the QSMT database which contains audiopyide Fig. 1. Qualisys-Movetrack DatabaseLeft: Landmarks on the

and electromagnetic articulography data recorded in lghralhe

results show that exploiting both audio and visual modsitin a
multistream HMM based scheme clearly improves performaake
ative to either audio or visual-only estimation.

Index Terms— speech inversion, Hidden Markov Models, au-

diovisual, articulatory, fusion

1. INTRODUCTION

We address the problem of audiovisual-to-articulatoryeshenver-
sion, namely the recovery of aspects of the vocal tract shape
dynamics given the speech signal and exploiting visuarmédion
from the speaker’s face. Speech inversion could potentalow
representing a speech signal by the corresponding voaldoa-
figuration. This would be quite interesting from a theoratigoint
of view but also in speech processing applications suchregibge
learning, speech coding and speech therapy.

In this direction, inorporation of the visual modality isr=id-
ered to be beneficial since there has been a number of stindies s
ing that the speaker’s face and the motion of important voeat
articulators such as the tongue are significantly correlafg—4].
Motivated by such findings we investigate a statistical famork to
recover vocal tract related information by exploiting btth speech
signal and visual cues from the speaker’s face concurresttiyrded.

In [4], the authors explore simple global linear mappingsarie
veil associations between the behavior of facial data aticLigatory
data during speech. They conclude that a high percentagé) (@0
the variance observed in the vocal tract data can be reabfenea
the facial data. This conclusion is also verified in [3] onitamdata
and again by means of global multivariate linear regressiMore
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speaker’s face have been localized by Active AppearanceshMuayl
and are shown as black dots. White dots are markers gluedeon th
face and tracked during data acquisiti®ight: Red dots correspond

to coils on the speaker’s tongue (dorsum, blade and tip feftrtd
right), teeth and lips that have been tracked by electroetagar-
ticulography. The database also contains speech whicltasded
concurrently.

recently, in [1, 2] articulatory parameters are recoveredhffacial
and audio data either via relevance vector machines or aldiobar
mapping. These previous studies have shown that, althoglgtbal
linear mapping is a rough approximation of the underlyinmptex
non-linear interaction between audio-visual featuresatidulatory
positions, it can serve as a first approximation, and alsdaseline
system which more advanced techniques have to improve.

On the other hand, to recover articulatory motion from atiosis
only, various sophisticated approaches have been followwel®] it
is found that Mixture Density Networks perform better thamlM
tilinear Perceptrons in acoustic-to-articulatory invens To esti-
mate articulatory trajectories from Mel Frequency Cepatoef-
ficients (MFCCs) derived from the audio signal, a Hidden Nark
Model(HMM)-Based Speech Production Model is proposed ]n [6
This model allows the imposition of more elaborate constsato
the dynamic behavior of the articulatory parameters thatesti-
mated for given speech acoustics. The HMM scheme is shown to
outperform inversion approaches based on codebooks.

In this context, in [7] we proposed the introduction of multi
stream HMM s to also exploit information from the speakeaisef in
the inversion task. As far as this visual modality is coneétnin
our experiments we utilized the 3D coordinates of the margared
on the speaker’s face and are shown in white in Fig. 1. These we
tracked by the Qualisys acquisition system and they ardadl@i
in the Qualisys-Movetrack (QSMT) dataset [8]. In more retédi
scenarios however, only one camera is expected to be raegattu
motion of the face, which is also expected to be free of anykarar
Thus in the present work we propose visual information regmea-
tion by means of Active Appearance Models. These are generat



models which facilitate effective and robust face modelihg our
case, they allow efficient extraction of visual featureschihinay be
used for inversion. To account for asynchrony between tsemied
modalities we also investigate alternative modeling sd®rvisual

of x, then a reasonable estimatelts, ~ + X" X, and similarly

for Ryy, andR,.. These estimates may not be reliable enough when
the training set sizéV is small relatively to the feature dimensions
n of x, m of y, and, consequently, when plugged into (4) to yield

and audio dynamics modeling is based on visemes and phonem#s, can lead to quite poor performance when we apply the lireear r

correspondingly. Late fusion is then applied to providécatatory
estimates given the combined information. Experimentseperted
in the QSMT database.

2. PROPOSED METHOD

2.1. Linear Models for Speech inversion

From a probabilistic point of view, the solution to audiaxas (AV)
speech inversion may be seen as the articulatory configaréiat
maximizes the posterior probability of the articulatoryacdcteris-
tics given the available AV information:

p(xly) = p(y[x)p(x)/p(y) 1)
It would be intuitive to first consider the static case in whimoth
the articulatory and the audiovisual characteristics dovaoy with
time. The parameter vecter (n elements) provides a proper rep-
resentation of the vocal tract. This representation coelceither
direct, including space coordinates of real articulatorsindirect,
describing a suitable articulatory model for example. Theliavi-
sual parameter vectgr (m elements) should ideally contain all the
vocal-tract related information that can be extracted ftbenacous-
tic signal on the one hand and speaker’s face on the othemdfur
values, linear spectral pairs or MFCCs have been appliedmastc
parameterization. For the face, space coordinates of &aysp e.g.
around the mouth, could be used or alternatively paramétssd
on a more sophisticated face model.

For the maximization, the distributign(y) is irrelevant since it
does not depend ax. Distributionp(x) ~ N(x;X, 0,) is assumed
to be Gaussian, for simplicity. The relationship betweenAl and
articulatory parameter vectors is in general expected twonéinear
but could be to a first order stochastically approximated byiesar
mapping (bothx andy are centered by mean subtraction):

y=Wx+e 2)

The errore of the approximation is regarded as zero-mean Gaussia|

with covariance). The maximum a posteriori probability solution

is:
x= (o +WQ W) o 'x+WTQy) 3)
The estimated solution is a weighted mean of both the obsenva

and the prior models. The weights are proportional to thatired
reliability of the two summands.

The linear mapping can be determined by means of multivariat

linear analysis techniques. Such techniques constitutesa of well
studied methods in statistics and other quantitative plises; one
can find a comprehensive introduction in [9]. We can easiythat,
when we completely know the underlying second-order siegif
the form of covariance matrice8.., Ryy, and Ry, then the opti-
mal in the MSE sense choice for the x n matrix W corresponds
to the Wiener filter

W = Ry Ry, 4

and the covariance of the approximation error in (2Di¢ E{(y —
9)(y — ?J)T} = Ryy — Rwa;leZz'

gressor (2) to unknown data. This is the main reason why iwg7]
proposed the application of Canonical Correlation Analy§ICA)
to estimate the linear mapping. Among other benefits, we batv t
CCA provides a sound mechanism to select reduced-rankvatHti
ate linear regression models which can outperform the ctiorel
full-rank model in the small training set size case.

2.2. Determination of Articulatory Parameter Trajectorie s

This framework can be extended to handle the inversion aé-tim
varying AV parameter sequences. The probabilities in Egwll
now concern vector sequences. The main consideration iado fi
accurate observation and prior models that would make tlwico
tractable. This is not straightforward given the complexif the
relationship between the acoustic and the articulatorgespahich
in general is nonlinear and one-to-many. Further, visufarination
should be properly exploited in order to somehow constnaer
sion and reduce the number of possible solutions. Motiviayeclr-
rent research in AV speech recognition, in [7] we extendedatbrk
in [6] to multistream HMMs in order to better fuse the audiaan
visual modalities.

Intuitively, in the case of continuous speech, we expectithe
ear approximation of Eqg. (2) to only be acceptable for lighitiene
intervals corresponding to a specific phoneme, or at leasirtagp
the phoneme. We also expect that using different, phongreeific
mappings would be even more effective. Hence, we would have a
piecewise linear approximation for the observation moésla prior
model for the dynamics of the articulatory parameters, anvHisl
used. Articulator dynamics are in general expected to bagine-
dependent and so we have one HMM for each phoneme and one
articulatory-to-audiovisual mapping for each state. Rentas in
audiovisual speech recognition [10] we assume that theoaal
visual cues form two separate streagpsandy, correspondingly
which are weighted differently when determining the HMMutput
probability p(cly) o« N(ya;Mec.a, Xec,a)”* N(yv; MeyZey) ™.
We accept that the weights, andw, should sum to one. The distri-
bution of the articulatory parameters at each HMM state isSSian.

A separate linear mapping= W;x+¢; is considered at each state.

Speech inversion involves finding the optimal state sequienc
given the audiovisual data and then for each state-alignetysis
frame estimate the corresponding articulatory parameteis Eq.3,
exploiting the state-specific linear mapping. The stataisece is
found by the Viterbi algorithm using the audiovisual datatwo
properly weighted stream$IMM training is performed in the con-
ventional way by likelihood maximization [6]. Given the agmtion
probabilities at each state, the linear mappings betwedinwgual
and articulatory data are estimated by means of reducddesaron-
ical correlation analysis.

Alternatively, to account for possible asynchrony betwéen
involved modalities, we can model their dynamics by usingase
rate audio and visual HMMs. Having an estimate of the aricul
tory trajectories based on each modality late fusion is tessible.
The final predicted trajectories can be generated as a veeigiver-
age. In case of independence it is straightforward to déneeorre-

Since the second order statistics are in practice unknown asponding weights, by properly adapting (3). For improvditiehcy,

priori, we must contend ourselves with sample-based estBna
thereof; for example, if théV x n matrix X gathersN samples

viseme- instead of phoneme-level HMMs may be used for theavis
stream. Visemes correspond to groups of phonemes thatdise in



tinguishable from each other when viewed on the face. Fanpig

phoneme-level transcriptions are included as well. Tha dgtuisi-

the visemeP corresponds to the group of phonemes /p/,/b/,/m/. Theion setup is shown in Fig. 1.

visemes that have been used in the experiments are giverijin [1

We will see that this modeling scheme may lead to improvetbper
mance.
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Fig. 2. Visual Front-End.Left: Mean shape, and the first eigen-
shapes;. Right: Mean textured, and the first eigentexturd; .

2.3. Face Active Appearance Modeling

We useActive Appearance Models (AAM) [12] of faces to accu-
rately track the speaker’s face and extract visual speethries from
both its shape and texture. AAM are generative models oftbbje-
pearance and have proven particularly effective in moddiimman
faces for diverse applications, such as face recognitidanagking.

Next, we give our experiments in audiovisual speech ingersi
To represent the speech signal we use 16 MFCCs (A). They are ex
tracted from 35-ms preemphasized (coefficient: 0.97) amdrHiag
windowed frames of the signal, at 60Hz, to match the frame aat
which the EMA data are recorded. The 0-th coefficient is edetl
On the articulatory side, we use the 2D coordinates of theil3 co
on the tongue (tip, blade, dorsum) and the coil on the lowasaor.
The data have been centered by mean subtraction. For theaftere
active apperance modeling, we have utilized 7 featuregsepting
shape and 17 representing apperance, i.e. 24 parametekd) (AA
total. Alternatively, for comparison and to also show thi ffoten-
tial of utilizing facial information for inversion, all th&D coordi-
nates of the face markers have been used as they are pronite i
database, i.e. 75 features (QS).

We have built models to recover articulatory trajectorigkes
from acoustic (A) and facial data (AAM, QS) separately omifro
both combined (A-AAM, A-QS). To investigate the incorpaoat
of visual information via AAM we could only use a subset of the
QSMT database corresponding to all the VCV sequences ahdfhal
the Swedish sentences for which video of sufficiently goodlityu
was available. For training, we have randomly selected 908tese

In the AAM scheme an object’s shape is modeled as a wireframatterances and testing is performed on the rest 10%.

mask defined by a set of landmark poifts,i = 1... N}, whose
coordinates constitute a shape vectoof length2N. We allow
for deviations from the mean shape by letting s lie in a linear
n-dimensional subspace, yielding= so + > ., pisi. The de-
formation of the shape to the mean shaps, defines a mapping
W (z;p), which brings the face exemplar on the current frafme
into registration with the mean face template. After caimgebut
shape deformation, the face color texture registered withnhiean
face can be modeled as a weighted sum of “eigentextufds’,
i.e, I(W(x;p)) = Ao(z) + >_iv, MiAi(z), whereA is the mean
texture of faces. Both elgenshape and eigentexture basésaaned
during a training phase.The first few of them extracted byhsac
procedure are depicted in Fig. 2.

To evaluate the obtained results we have estimated both the
RMS difference between the originaland the estimated trajecto-
ries as well as the Pearson product-moment correlatiorficiesit,
pzs = tr(Blzz"))//tr(ElzzT])tr(E[22T]). Results are sum-
marized in Fig. 3. The correlation coefficient and the RM®efor
the predicted trajectories are shown for increasing nurabeiMM
states. One left-right HMM per phoneme and one separatei-for s
lence have been trained. The results at zero states conegpo
global linear models and are included for comparison.

For the audiovisual case (A-AAM, A-QS) multistream HMMs
have been used. The stream weights are essentially appiligfbo
the determination of the optimal HMM state sequence via titeri
algorithm. This process is actually an alignment and notagsi-

Given a trained AAM model fltt|ng amounts to flnd|ng for each tion process, as we consider that the phonem|c content of &ac

video framel, the parameterg; = {p:, A+ } which minimize the
squared texture reconstruction erfofWW (p:)) —Ao—>_ 1 | A, As;
efficient iterative algorithms for this non-linear leastiages problem
can be found in [12]. The fitting procedure employs a facealete
[13] to get an initial shape estimate for the first frame. Asuai
feature vector for speech inversion we use the paramgtestthe
fitted AAM.

3. EXPERIMENTS AND DISCUSSION

Database Description For our experiments we have used the

QSMT dataset described in detail in [8]. This dataset costai-

terance is known. We have found that the performance is aptim
case the alignment is performed using only the audio fegttinat is
if we assign a zero stream weight to the visual stream. Thismia-
tion is in accordance with similar experience in audiovispeech
recognition for audio-noise free experiments [10]. Theiastiould
be exclusively trusted for recognition when no noise is @nésIn
our audiovisual-to-articulatory inversion setup it apsehat in the
absence of audio noise, the audio stream should be trustatign-
ment but, given the optimal state alignment, the contrdsubf the
visual modality in inversion is very important in any case.
In general, fusion of the visual AAM features with audio (A-

AAM) is beneficial compared to the audio-only (A) or visuaihp

multaneous measurements of the audio signal, tongue moveme (V) cases. Of course, the best performance is achieved widio a

and facial motion during speech. In short, apart from thémsig-
nal which is sampled at 16kHz and the video which is at 30fashe
frame of the dataset (at the rate of 60 fps) contains the 3Bd¢oo
nates of 25 reflectors glued on the speaker’s face (QualSydata,
75-dimensional vectoxk), as well the 2D mid-sagittal plane coor-
dinates of 6 EMA (Electromagnetic Articulography) coilsigtl on
the speaker’s tongue, teeth and lips (12-dimensional vgjt@om-
prising in total around 65000 data pais:, y:). These correspond
to one repetition of 135 symmetric VCV (Vowel-Consonantat)

is fused with the ground-truth facial features (QS). Thigsified
since the latter accurately represent 3D facial infornmatiehich is
clearly richer than the 2D image based information captdirech

the AAM features. Measurement of the AAM features however is
much more practical since it does not require any speciacarive-
nient acquisition setup but only images from the frontalwad the
speaker’s face.

At a different level, we have explored various modeling amd f

sion schemes of the audio and visual stream dynamics in the pr

and 37 CVC (Consonant-Vowel-Consonant) words and 266 shopiosed framework. This time our experiments were perfornmetthe

everyday Swedish sentences. All data are temporally aligmel

full QSMT dataset and the visual information was represghiethe
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Fig. 4. Coordinates of the coil on the tongue blade as predicted fro
audio only (A), face only (Qualisys) and both (A-QS MS-HMM).
Fig. 3. Correlation coefficient and RMS Error between original andThe measured coordinates are also superimposed with bidgvec!

predicted articulatory trajectories for increasing numbeHMM
states using facial information only (via AAM or Qualisys$§Xea-
tures) audio only (MFCC) and both (AV-AAM, AV-QS). Zero stat
correspond to the case of a global linear model.

thick lines.

is clearly seen that, in the audiovisual case, inversiortilisp®s-

sible with satisfactory performance and clearly outpe®the cor-

Features| Level Type States| RMS (mm) | p.s
Audio P HMM 2 2.56 0.60

Qs P HMM 2 2.30 0.65

Qs \ HMM 3 2.24 0.66
A-QS P HMM 2 2.16 0.69
A-QS P-P | HMM+LF 2-2 2.02 0.71
A-QS P-V | HMM+LF 2-2 1.99 0.72
A-QS P MS-HMM 2 1.95 0.74

Table 1. RMS error and correlation coefficient for the predicted
articulatory trajectories using various HMM-based schem@u-
dio features (A), 3D facial marker coordinates tracked frQuoml-
isys (QS) or both have been used. The models may be eitheg at th
phoneme (P) or at the viseme (V) level and either single HMs a
used, or in a late fusion (LF) configuration or as multistre®ms- [
HMM).
Qualisys features (QS). Results are given in Table 1. Audibwi-
sual information dynamics have been fused in three diftfenays,
namely via simple HMMs trained on concatenated featureovect
single-per modality HMMs with late fusion as sketched insads
tion 2.2 (HMM+LF), or finally via multistream HMMs (MS-HMM).
For the late fusion scheme two variants are given, difféaéng [
from each other in whether the visual stream is modeled as a se
quence of phonemes (P) or visemes (V). Interestingly, temes
demonstrate improved performance, both in the single nitgdaise
and in fusion.

An example of the predicted trajectories for the 2D coortiga
of the tongue blade on the midsagittal plane against the uneds
ones is shown in Fig.4 for a Swedish phrase. The correspgndin [8]
RMS error is 2.13 mm for the multistream HMM case trained on

(6]

(7]

MFCC and Qualisys feature sets. Bl
[10]
4, CONCLUSIONS AND FUTURE WORK 1]

We have elaborated on a framework based on Hidden Markov Mod-
els to perform audiovisual-to-articulatory speech iniars Experi- [12]
ments have been carried out on the QSMT dataset to recover EMA
coil movements from face motion and speech acoustics. Face i
modeled by means of Active Appearance Modeling. In this way
it is possible to utilize visual information without a spaicacqui-
sition setup as the Qualisys system, that would require Xame

ple gluing markers on the speaker’s face. Performance nigtytlgl
degrade compared to the case when these markers are uséd but i

[13]

[14]

responding single-modality cases. Experiments regantiodeling
and fusion schemes additionaly show that modeling the Vitream
at the viseme level may improve performance and that the NV8AH
outperforms other rival schemes, such as the use of sepéivélits
and late fusion. Currently, we have also been exploring geeaf
Product-HMMs that could further improve performance [IEhese
could account for asynchrony as the late fusion scheme ddes &
more constrained and robust manner. We further look intoificad
tions concerning continuity and more detailed impositibdymamic
constraints, e.g. related to coarticulation. In parallehore detailed
phoneme/viseme-based analysis is under way and is expgeated
veil the full benefits of the proposed framework.
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