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ABSTRACT

We are interested in recovering aspects of vocal tract’s geometry and
dynamics from auditory and visual speech cues. We approach the
problem in a statistical framework based on Hidden Markov Mod-
els and demonstrate effective estimation of the trajectories followed
by certain points of interest in the speech production system. Al-
ternative fusion schemes are investigated to account for asynchrony
between the modalities and allow independent modeling of the dy-
namics of the involved streams. Visual cues are extracted from the
speaker’s face by means of Active Appearance Modeling. We report
experiments on the QSMT database which contains audio, video,
and electromagnetic articulography data recorded in parallel. The
results show that exploiting both audio and visual modalities in a
multistream HMM based scheme clearly improves performancerel-
ative to either audio or visual-only estimation.

Index Terms— speech inversion, Hidden Markov Models, au-
diovisual, articulatory, fusion

1. INTRODUCTION

We address the problem of audiovisual-to-articulatory speech inver-
sion, namely the recovery of aspects of the vocal tract shapeand
dynamics given the speech signal and exploiting visual information
from the speaker’s face. Speech inversion could potentially allow
representing a speech signal by the corresponding vocal tract con-
figuration. This would be quite interesting from a theoretical point
of view but also in speech processing applications such as language
learning, speech coding and speech therapy.

In this direction, inorporation of the visual modality is consid-
ered to be beneficial since there has been a number of studies show-
ing that the speaker’s face and the motion of important vocaltract
articulators such as the tongue are significantly correlated [1–4].
Motivated by such findings we investigate a statistical framework to
recover vocal tract related information by exploiting boththe speech
signal and visual cues from the speaker’s face concurrentlyrecorded.

In [4], the authors explore simple global linear mappings toun-
veil associations between the behavior of facial data and articulatory
data during speech. They conclude that a high percentage (80%) of
the variance observed in the vocal tract data can be recovered from
the facial data. This conclusion is also verified in [3] on similar data
and again by means of global multivariate linear regression. More
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Fig. 1. Qualisys-Movetrack Database.Left: Landmarks on the
speaker’s face have been localized by Active Appearance Modeling
and are shown as black dots. White dots are markers glued on the
face and tracked during data acquisition.Right: Red dots correspond
to coils on the speaker’s tongue (dorsum, blade and tip from left to
right), teeth and lips that have been tracked by electromagnetic ar-
ticulography. The database also contains speech which is recorded
concurrently.

recently, in [1, 2] articulatory parameters are recovered from facial
and audio data either via relevance vector machines or a global linear
mapping. These previous studies have shown that, although aglobal
linear mapping is a rough approximation of the underlying complex
non-linear interaction between audio-visual features andarticulatory
positions, it can serve as a first approximation, and also as abaseline
system which more advanced techniques have to improve.

On the other hand, to recover articulatory motion from acoustics
only, various sophisticated approaches have been followed. In [5] it
is found that Mixture Density Networks perform better than Mul-
tilinear Perceptrons in acoustic-to-articulatory inversion. To esti-
mate articulatory trajectories from Mel Frequency Cepstrum Coef-
ficients (MFCCs) derived from the audio signal, a Hidden Markov
Model(HMM)-Based Speech Production Model is proposed in [6].
This model allows the imposition of more elaborate constraints to
the dynamic behavior of the articulatory parameters that are esti-
mated for given speech acoustics. The HMM scheme is shown to
outperform inversion approaches based on codebooks.

In this context, in [7] we proposed the introduction of multi-
stream HMMs to also exploit information from the speaker’s face in
the inversion task. As far as this visual modality is concerned, in
our experiments we utilized the 3D coordinates of the markers glued
on the speaker’s face and are shown in white in Fig. 1. These were
tracked by the Qualisys acquisition system and they are available
in the Qualisys-Movetrack (QSMT) dataset [8]. In more realistic
scenarios however, only one camera is expected to be recording the
motion of the face, which is also expected to be free of any markers.
Thus in the present work we propose visual information representa-
tion by means of Active Appearance Models. These are generative



models which facilitate effective and robust face modeling. In our
case, they allow efficient extraction of visual features which may be
used for inversion. To account for asynchrony between the observed
modalities we also investigate alternative modeling schemes. Visual
and audio dynamics modeling is based on visemes and phonemes
correspondingly. Late fusion is then applied to provide articulatory
estimates given the combined information. Experiments arereported
in the QSMT database.

2. PROPOSED METHOD

2.1. Linear Models for Speech inversion

From a probabilistic point of view, the solution to audiovisual (AV)
speech inversion may be seen as the articulatory configuration that
maximizes the posterior probability of the articulatory characteris-
tics given the available AV information:

p(x|y) = p(y|x)p(x)/p(y) (1)

It would be intuitive to first consider the static case in which both
the articulatory and the audiovisual characteristics do not vary with
time. The parameter vectorx (n elements) provides a proper rep-
resentation of the vocal tract. This representation could be either
direct, including space coordinates of real articulators,or indirect,
describing a suitable articulatory model for example. The Audiovi-
sual parameter vectory (m elements) should ideally contain all the
vocal-tract related information that can be extracted fromthe acous-
tic signal on the one hand and speaker’s face on the other. Formant
values, linear spectral pairs or MFCCs have been applied as acoustic
parameterization. For the face, space coordinates of key-points, e.g.
around the mouth, could be used or alternatively parametersbased
on a more sophisticated face model.

For the maximization, the distributionp(y) is irrelevant since it
does not depend onx. Distributionp(x) ∼ N(x; x̄, σx) is assumed
to be Gaussian, for simplicity. The relationship between the AV and
articulatory parameter vectors is in general expected to benonlinear
but could be to a first order stochastically approximated by alinear
mapping (bothx andy are centered by mean subtraction):

y = Wx + ǫ (2)

The errorǫ of the approximation is regarded as zero-mean Gaussian
with covarianceQ. The maximum a posteriori probability solution
is:

x̂ = (σ−1

x + W T Q−1W )−1(σ−1

x x̄ + W T Q−1
y) (3)

The estimated solution is a weighted mean of both the observation
and the prior models. The weights are proportional to the relative
reliability of the two summands.

The linear mapping can be determined by means of multivariate
linear analysis techniques. Such techniques constitute a class of well
studied methods in statistics and other quantitative disciplines; one
can find a comprehensive introduction in [9]. We can easily see that,
when we completely know the underlying second-order statistics in
the form of covariance matricesRxx, Ryy, andRyx, then the opti-
mal in the MSE sense choice for them × n matrix W corresponds
to the Wiener filter

W = RyxR−1

xx , (4)

and the covariance of the approximation error in (2) isQ , E{(y−
ŷ)(y − ŷ)T } = Ryy − RyxR−1

xx RT
yx.

Since the second order statistics are in practice unknown a-
priori, we must contend ourselves with sample-based estimates
thereof; for example, if theN × n matrix X gathersN samples

of x, then a reasonable estimate isRxx ≈ 1

N
XT X, and similarly

for Ryy, andRyx. These estimates may not be reliable enough when
the training set sizeN is small relatively to the feature dimensions
n of x, m of y, and, consequently, when plugged into (4) to yield
W , can lead to quite poor performance when we apply the linear re-
gressor (2) to unknown data. This is the main reason why in [7]we
proposed the application of Canonical Correlation Analysis (CCA)
to estimate the linear mapping. Among other benefits, we saw that
CCA provides a sound mechanism to select reduced-rank multivari-
ate linear regression models which can outperform the conventional
full-rank model in the small training set size case.

2.2. Determination of Articulatory Parameter Trajectorie s

This framework can be extended to handle the inversion of time-
varying AV parameter sequences. The probabilities in Eq. (1) will
now concern vector sequences. The main consideration is to find
accurate observation and prior models that would make the solution
tractable. This is not straightforward given the complexity of the
relationship between the acoustic and the articulatory space, which
in general is nonlinear and one-to-many. Further, visual information
should be properly exploited in order to somehow constrain inver-
sion and reduce the number of possible solutions. Motivatedby cur-
rent research in AV speech recognition, in [7] we extended the work
in [6] to multistream HMMs in order to better fuse the audio and
visual modalities.

Intuitively, in the case of continuous speech, we expect thelin-
ear approximation of Eq. (2) to only be acceptable for limited time
intervals corresponding to a specific phoneme, or at least a part of
the phoneme. We also expect that using different, phoneme-specific
mappings would be even more effective. Hence, we would have a
piecewise linear approximation for the observation model.As a prior
model for the dynamics of the articulatory parameters, an HMM is
used. Articulator dynamics are in general expected to be phoneme-
dependent and so we have one HMM for each phoneme and one
articulatory-to-audiovisual mapping for each state. Further, as in
audiovisual speech recognition [10] we assume that the audio and
visual cues form two separate streamsya and yv correspondingly
which are weighted differently when determining the HMMc output
probability p(c|y) ∝ N(ya;mc,a, Σc,a)waN(yv;mc,vΣc,v)

wv .
We accept that the weightswa andwν should sum to one. The distri-
bution of the articulatory parameters at each HMM state is Gaussian.
A separate linear mappingy = Wjx+ǫj is considered at each state.

Speech inversion involves finding the optimal state sequence
given the audiovisual data and then for each state-aligned analysis
frame estimate the corresponding articulatory parametersas in Eq.3,
exploiting the state-specific linear mapping. The state sequence is
found by the Viterbi algorithm using the audiovisual data intwo
properly weighted streams.HMM training is performed in the con-
ventional way by likelihood maximization [6]. Given the occupation
probabilities at each state, the linear mappings between audiovisual
and articulatory data are estimated by means of reduced-rank canon-
ical correlation analysis.

Alternatively, to account for possible asynchrony betweenthe
involved modalities, we can model their dynamics by using sepa-
rate audio and visual HMMs. Having an estimate of the articula-
tory trajectories based on each modality late fusion is thenpossible.
The final predicted trajectories can be generated as a weighted aver-
age. In case of independence it is straightforward to derivethe corre-
sponding weights, by properly adapting (3). For improved efficiency,
viseme- instead of phoneme-level HMMs may be used for the visual
stream. Visemes correspond to groups of phonemes that are indis-



tinguishable from each other when viewed on the face. For example,
the visemeP corresponds to the group of phonemes /p/,/b/,/m/. The
visemes that have been used in the experiments are given in [11].
We will see that this modeling scheme may lead to improved perfor-
mance.

Fig. 2. Visual Front-End.Left: Mean shapes0 and the first eigen-
shapes1. Right: Mean textureA0 and the first eigentextureA1.

2.3. Face Active Appearance Modeling

We useActive Appearance Models (AAM) [12] of faces to accu-
rately track the speaker’s face and extract visual speech features from
both its shape and texture. AAM are generative models of object ap-
pearance and have proven particularly effective in modeling human
faces for diverse applications, such as face recognition ortracking.
In the AAM scheme an object’s shape is modeled as a wireframe
mask defined by a set of landmark points{xi, i = 1 . . . N}, whose
coordinates constitute a shape vectors of length 2N . We allow
for deviations from the mean shapes0 by letting s lie in a linear
n-dimensional subspace, yieldings = s0 +

Pn

i=1
pisi. The de-

formation of the shapes to the mean shapes0 defines a mapping
W (x;p), which brings the face exemplar on the current frameI
into registration with the mean face template. After canceling out
shape deformation, the face color texture registered with the mean
face can be modeled as a weighted sum of “eigentextures”{Ai},
i.e., I(W (x;p)) ≈ A0(x) +

Pm

i=1
λiAi(x), whereA0 is the mean

texture of faces. Both eigenshape and eigentexture bases are learned
during a training phase.The first few of them extracted by such a
procedure are depicted in Fig. 2.

Given a trained AAM, model fitting amounts to finding for each
video frameIt the parameters̃pt ≡ {pt, λt} which minimize the
squared texture reconstruction errorIt(W (pt))−A0−

Pm

i=1
λt,iAi;

efficient iterative algorithms for this non-linear least squares problem
can be found in [12]. The fitting procedure employs a face detector
[13] to get an initial shape estimate for the first frame. As visual
feature vector for speech inversion we use the parametersp̃t of the
fitted AAM.

3. EXPERIMENTS AND DISCUSSION

Database Description For our experiments we have used the
QSMT dataset described in detail in [8]. This dataset contains si-
multaneous measurements of the audio signal, tongue movements
and facial motion during speech. In short, apart from the audio sig-
nal which is sampled at 16kHz and the video which is at 30fps, each
frame of the dataset (at the rate of 60 fps) contains the 3D coordi-
nates of 25 reflectors glued on the speaker’s face (Qualisys/QS data,
75-dimensional vectorx), as well the 2D mid-sagittal plane coor-
dinates of 6 EMA (Electromagnetic Articulography) coils glued on
the speaker’s tongue, teeth and lips (12-dimensional vector y), com-
prising in total around 65000 data pairs(xt, yt). These correspond
to one repetition of 135 symmetric VCV (Vowel-Consonant-Vowel)
and 37 CVC (Consonant-Vowel-Consonant) words and 266 short
everyday Swedish sentences. All data are temporally aligned and

phoneme-level transcriptions are included as well. The data aqcuisi-
tion setup is shown in Fig. 1.

Next, we give our experiments in audiovisual speech inversion.
To represent the speech signal we use 16 MFCCs (A). They are ex-
tracted from 35-ms preemphasized (coefficient: 0.97) and Hamming
windowed frames of the signal, at 60Hz, to match the frame rate at
which the EMA data are recorded. The 0-th coefficient is excluded.
On the articulatory side, we use the 2D coordinates of the 3 coils
on the tongue (tip, blade, dorsum) and the coil on the lower incisor.
The data have been centered by mean subtraction. For the face, after
active apperance modeling, we have utilized 7 features representing
shape and 17 representing apperance, i.e. 24 parameters (AAM) in
total. Alternatively, for comparison and to also show the full poten-
tial of utilizing facial information for inversion, all the3D coordi-
nates of the face markers have been used as they are provided in the
database, i.e. 75 features (QS).

We have built models to recover articulatory trajectories either
from acoustic (A) and facial data (AAM, QS) separately or from
both combined (A-AAM, A-QS). To investigate the incorporation
of visual information via AAM we could only use a subset of the
QSMT database corresponding to all the VCV sequences and half of
the Swedish sentences for which video of sufficiently good quality
was available. For training, we have randomly selected 90% of these
utterances and testing is performed on the rest 10%.

To evaluate the obtained results we have estimated both the
RMS difference between the originalx and the estimated̂x trajecto-
ries as well as the Pearson product-moment correlation coefficient,
ρxx̂ = tr(E[xx̂T ])/

p

tr(E[xxT ])tr(E[x̂x̂T ]). Results are sum-
marized in Fig. 3. The correlation coefficient and the RMS error for
the predicted trajectories are shown for increasing numberof HMM
states. One left-right HMM per phoneme and one separate for si-
lence have been trained. The results at zero states correspond to
global linear models and are included for comparison.

For the audiovisual case (A-AAM, A-QS) multistream HMMs
have been used. The stream weights are essentially applied only for
the determination of the optimal HMM state sequence via the Viterbi
algorithm. This process is actually an alignment and not a recogni-
tion process, as we consider that the phonemic content of each ut-
terance is known. We have found that the performance is optimal in
case the alignment is performed using only the audio features, that is
if we assign a zero stream weight to the visual stream. This observa-
tion is in accordance with similar experience in audiovisual speech
recognition for audio-noise free experiments [10]. The audio should
be exclusively trusted for recognition when no noise is present. In
our audiovisual-to-articulatory inversion setup it appears that in the
absence of audio noise, the audio stream should be trusted for align-
ment but, given the optimal state alignment, the contribution of the
visual modality in inversion is very important in any case.

In general, fusion of the visual AAM features with audio (A-
AAM) is beneficial compared to the audio-only (A) or visual-only
(V) cases. Of course, the best performance is achieved when audio
is fused with the ground-truth facial features (QS). This isjustified
since the latter accurately represent 3D facial information, which is
clearly richer than the 2D image based information capturedfrom
the AAM features. Measurement of the AAM features however is
much more practical since it does not require any special or inconve-
nient acquisition setup but only images from the frontal view of the
speaker’s face.

At a different level, we have explored various modeling and fu-
sion schemes of the audio and visual stream dynamics in the pro-
posed framework. This time our experiments were performed on the
full QSMT dataset and the visual information was represented by the
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Fig. 3. Correlation coefficient and RMS Error between original and
predicted articulatory trajectories for increasing number of HMM
states using facial information only (via AAM or Qualisys (QS) fea-
tures) audio only (MFCC) and both (AV-AAM, AV-QS). Zero states
correspond to the case of a global linear model.

Features Level Type States RMS (mm) ρxx̂

Audio P HMM 2 2.56 0.60
QS P HMM 2 2.30 0.65
QS V HMM 3 2.24 0.66

A-QS P HMM 2 2.16 0.69
A-QS P-P HMM+LF 2-2 2.02 0.71
A-QS P-V HMM+LF 2-2 1.99 0.72
A-QS P MS-HMM 2 1.95 0.74

Table 1. RMS error and correlation coefficient for the predicted
articulatory trajectories using various HMM-based schemes. Au-
dio features (A), 3D facial marker coordinates tracked fromQual-
isys (QS) or both have been used. The models may be either at the
phoneme (P) or at the viseme (V) level and either single HMMs are
used, or in a late fusion (LF) configuration or as multistream(MS-
HMM).

Qualisys features (QS). Results are given in Table 1. Audio and vi-
sual information dynamics have been fused in three different ways,
namely via simple HMMs trained on concatenated feature vectors,
single-per modality HMMs with late fusion as sketched in subsec-
tion 2.2 (HMM+LF), or finally via multistream HMMs (MS-HMM).
For the late fusion scheme two variants are given, differentiating
from each other in whether the visual stream is modeled as a se-
quence of phonemes (P) or visemes (V). Interestingly, the visemes
demonstrate improved performance, both in the single modality case
and in fusion.

An example of the predicted trajectories for the 2D coordinates
of the tongue blade on the midsagittal plane against the measured
ones is shown in Fig.4 for a Swedish phrase. The corresponding
RMS error is 2.13 mm for the multistream HMM case trained on
MFCC and Qualisys feature sets.

4. CONCLUSIONS AND FUTURE WORK

We have elaborated on a framework based on Hidden Markov Mod-
els to perform audiovisual-to-articulatory speech inversion. Experi-
ments have been carried out on the QSMT dataset to recover EMA
coil movements from face motion and speech acoustics. Face is
modeled by means of Active Appearance Modeling. In this way
it is possible to utilize visual information without a special acqui-
sition setup as the Qualisys system, that would require for exam-
ple gluing markers on the speaker’s face. Performance may slightly
degrade compared to the case when these markers are used but it

Fig. 4. Coordinates of the coil on the tongue blade as predicted from
audio only (A), face only (Qualisys) and both (A-QS MS-HMM).
The measured coordinates are also superimposed with light colored
thick lines.

is clearly seen that, in the audiovisual case, inversion is still pos-
sible with satisfactory performance and clearly outpeforms the cor-
responding single-modality cases. Experiments regardingmodeling
and fusion schemes additionaly show that modeling the visual stream
at the viseme level may improve performance and that the MS-HMM
outperforms other rival schemes, such as the use of separateHMMs
and late fusion. Currently, we have also been exploring the use of
Product-HMMs that could further improve performance [14].These
could account for asynchrony as the late fusion scheme does but in a
more constrained and robust manner. We further look into modifica-
tions concerning continuity and more detailed imposition of dynamic
constraints, e.g. related to coarticulation. In parallel,a more detailed
phoneme/viseme-based analysis is under way and is expectedto un-
veil the full benefits of the proposed framework.
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