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ABSTRACT

In this paper, we present a multisensor multiband energykitig
scheme for robust feature extraction in noisy environmenige
introduce a multisensor feature extraction algorithm \Wwhoom-
bines both the spatial and frequency information incorj@atén the
speech signals captured by a microphone array. This is st
estimation of cross-energies over multiple sensors andmization
of an error term due to noise. The relevant noise-analysis/en.
Automatic Speech Recognition (ASR) experiments at varBNg
levels demonstrate that the newly proposed frontend paddetter
than alternative schemes, especially in noisy conditions.

Index Terms— Robust Feature Extraction, ASR, Energy Track-
ing, Teager Energy, Microphone Array

1. INTRODUCTION

A major concern of Human-Machine Interaction (HMI) is to im-
prove the interactions between users and computers by me&m-
puters more usable and receptive to the user’s needs. Spem:
nition has been one of the leading technologies to accomis
goal. For this reason significant efforts have been made evetal
ASR systems have been developed and perform satisfactdaly-
ever, the majority of the current single-channel solutisuer from
two serious drawbacks. Specifically, their efficacy degsagignif-
icantly when speech is contaminated with noise. Furthemast
applications, users are required to wear head-mounted-titising
microphones. Proximity of the microphone to the speakerezan
sure a high speech signal level which can partly compensatté
presence of environmental noise.

An emerging area of research which can offer a potential-solu

tion to both constraints focuses on the use of microphoraysuriThe
main advantage of multisensor techniques over the starsilagte-
channel solutions is that they provide “richer” informatiabout the
acoustic environment. This is achieved by exploiting thetisib di-
versity of the acoustic signals to be recognized and noiseg she
corresponding sources are usually physically separatggkice. So,
it is expected that microphone arrays can improve recanipier-
formance, especially in the case of noisy and reverberartosn
ments.

State of the art multisensor speech recognition systensraily
apply microphone array processing as a separate noiseessgm
frontend module. Input signals are filtered by a beamfornmet a
acoustic features (typically MFCC) for ASR are then exeddrom
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the denoised output signal. The most known and efficient baam
ing algorithm is the Minimum Variance Distortionless Resge
(MVDR) beamformer [1]. This beamformer has the importapr
erty that maximizes tharray gain which is a measure of the in-
crease in signal-to-noise ratio (SNR) that is obtained bgguan
array rather than a single microphone. However, the MVDRrbea
former suffers from a serious drawback. Its directivitytéacwhich
is a measure describing the ability of the beamformer torgsthe
noise field, is low in the lower frequency regions and thus MR/B
incapable of sufficiently removing the noise in those regidn ad-
dition, the filtering process distorts the speech spectesulting in
poor ASR performance.

Alternatively, we propose a multisensor feature extractio
scheme. We investigate the potential of exploiting a matitb de-
composition scheme for multisensor acoustic processingisy en-
vironments. Based on energy tracking, via the nonlineagdea
Kaiser operator (TEO) [2], the least affected by noise sobba
across the sensors of the microphone array are combinedrigee
1). Then the energy features from these combined subbaadscar
tracted. This procedure is described in two steps for gléxit can
be efficiently realized in a single step.

The organization of the rest of the paper is as follows: in-Sec
tion 2 we review the theoretical background of the nonlinkager-
Kaiser energy operator and briefly describe the Gabor filterbartk tha
is used for the multiband decomposition. In Section 3 anyail
on how the noise affects the energy measurements at evergrsib
is provided. In Section 4, based on the noise analysis, weoge
a multisensor feature extraction method which combinegiteegy
measurements over multiple sensors. Finally, results dfiseasor
ASR experiments are presented in Section 5, while conciesind
future work are found in Section 6.

2. BACKGROUND

In [2] Kaiser, based on Teager’s previous work, introducedrain-
ear differential operator call€fager-Kaiser energy operator (TEO)
W. This operator can track the instantaneous energy of asquoc
ducing an oscillation. Whe® is operating on a continuous-time
signal is given byl (z(t)) = (t)? — x(t)#(t), wherei(t) and
Z(t) indicate the first and second time derivative of the argument
Applied to an AM-FM signal of the form:(¢) = a(t) cos (¢(t)),
yields the instantaneous source energy,¥.éz(t)) ~ a(t)*w;(t)?,
where the approximation error becomes negligible [3] ifitretan-
taneous amplitude(t) and instantaneous frequeney(t) = ¢(t),
do not vary too fast or too much with respect to the averageevet
w;(t). In this work instead of using the “traditional” signal eger
approximation of the mean square amplitude, that only takesac-
count the kinetic energy of the signal’s source, we will s TEO



for computing the total source energy, which hereafter wieaoall
Teager energy.

s(t) = a(t) cos [¢(t)], with both time-varying amplitude(t) and
time-varying instantaneous frequeney(t) = ¢(¢). Such an ap-

In order to apply the TEO speech or any wideband signal, iforoximation is well motivated for speech signals, sincesgixpental

is necessary first to filter the signal and isolate specifiqueacy
bands. This necessity comes from the fact that the operatorat
perform well in multi-component signals due to inherentifations
of the algorithm. However, this filtering process is also enomon
strategy followed in the majority of feature extraction @ighms,
like MFCCs. In this paper, the observed signals at the ostpiithe
sensors, in the microphone array, are filtered through alfdtek of
35 overlapping Mel-spaced Gabor filters. These filters aoseh as
an optimum candidate for being compact, smooth and minimoim u
certainty filters, i.e. their rms time and frequency bandiwvjgroduct
attains the minimum value in the uncertainty principle naéy [3].

3. NOISE ANALYSIS ON MULTISENSOR CROSS
ENERGIES

Let us consider afi/-sensor linear microphone array in a noisy en-
vironment that captures the waveform of a desired sourcekighe
observed signay;, (t), m = 0, ..., M —1, atthemth sensor corre-
sponds to a linearly filtered version of the source sigi&), plus an
additive noise component,, (). The additive noise component is

assumed to be a zero mean, wide-sense stationary (WSS)i@auss

random process with autocorrelation functié,(7) and spectral

results have produced strong evidences for the existenaenpfi-
tude and frequency modulations (AM—FM) in speech resonaigee
nals [3]. In this case, the Teager energy @f) will be approximately
equal to :W [s(t)] =~ a(t)*w;(t)?. Moreover, under this assumption
the bandpass signaj (¢) can be approximated as [5] :

3j(t) = a(t) |Gj [wi(®)]|cos {p(t) + £G; [wi(t)]}  (6)
and thus the Teager energy of the filtered signét) will equal to
U [s;(t)] = a(t)’wi(t)* |Gy [wi(B)]]* - )

At this point we will focus on theE {W. [vn,; (t), vi;(t)]} term of
Eg. (5). Since the noise processes(t), vx(t) have cross spectral
density @, (w), the filtered noise processes will have cross spec-
tral density ® .z, (w) = |G ()| @k (w). In addition, since
vmj (1), vk; (t) are WSS Gaussians, the processgs(t), 0x, (t) and
¥ (t) are also WSS Gaussians, and the pro@ugt(¢) o, (¢) is sta-
tistically independent of both,,; () andty;(¢) [6]. Therefore the
energy operator output

Ve [vmg (8), 0 ()] = D (8)0r; (£) — vmyi ()5 (8)  (8)

density @, (w). The noise components observed at two different!S the sum of two independent processes. To compute the nfean o
sensorsn, k are also considered joint WSS processes with crossthis term we have to estimate the following two quantities

correlation functionR,, (7) and cross-spectral densi®,,(w) .
The signals received by the sensors of the microphone aresfed
into a time alignment module to account for the effects ofpga-
tion. In this work we do not address the problem of reverhemnat
thus we assume that the output signals can be denoted as :
Ym(t) = s(t) + vm(t), m=0,...,.M — 1 1)
In the multisensor-multiband scheme, every aligned injourtas

is decomposed into N subband signals by the analysis fiti&rkaet
us denote withy,,,; the signal observed at the output of theh sen-
sor and filtered by thgth filter of the filterbank. This decomposition
can be expressed as:

ymj(t):ym(t)*gj(t)7ijw“vN_]w 2

wherex denotes convolution. Estimating the cross Teager energy [4

between a sensor pdin , k) of the filtered (bandpass) signals by the
jth filter of the filterbank results in :

e [ymj (), yrs ()] = @ms ()9 () = yms (O (t) . (3)

We can expand this expression using Egs. (1) and (2) to obtain

e [ymj (), yrj ()] =P [55(8)] + Ve [vm; (t), vi; ()] +

e [s5(6), 05 ()] + T [orms (055 (1)] )

The three last terms on the right side of equation (4) are érms
due to noise. If we now take the mean of Eq. (4) we will have

E{We [ym; (), yr; (0]} = E{Y [s; ()]} +E{ Ve [vm; (2), vk; (t()])} :
5
since the last two terms on the right side of Eq. (4) are zerame
In order to simplify the analysis we make a fundamental agsum
tion: the signals(t) is well approximated by an AM-FM signal,

E [m; ()0 (£)] = =R, (0) o
E [om; ()i (£)] =R\, ,(0).

Of interest are the values that the second derivative of these
correlation,R k), (7), takes at the origin

+oo
R0y = 5= [ G 16 emu)de. @0

An approximation of this quantity similar to the one propbge[5]

can be :R{") (0) (wi(t)) where

_ H(2k)

(mk)j

R (@i(®) = (=DFwi(®)* |G (i ()] Timry;» - (12)

Gj(w)
Gj (we)

+o0 2
with Ty = 5= ‘ ‘ P,k (w) dw , the concentration
—oo

of noise power within the passband of the filtg(t). Combining
Egs. (5), (7), (8), (9), (11) we find that the mean value of ttoss
Teager energW. [ym;(t), yx;(t)] equals to

EA{Yc [ym; (1), yr; ()]} =E{P [s;(t)]}
+2wi () 1G5 (Wi T mry;  (12)

Error Term

At this point of the analysis we have to note that in the caserarh
m = k, all the results still hold but instead &f,,,x); and® (,,.1); we
will have R,,; and®,,,; respectively. Using the following inequality
which appears in [6],

2

—+oo —+oo

Uw%w(w)dw < / By (@) deo / Dy (w)de  (13)




Multiband Analysis Teager measurements{V [y.,; (t)]} ,m = 0,..., M — 1. Then
we can select the two sensors (let thenpbe) which produce the
minimum values for the specific subband (let it feand estimate
the two mean cross Teager energies of the sensor(pai$, (¢, p).
Finally, we may choose the minimum value of the correspandin
results as:

min{ £ {W [yp; (1)1}, E{Y [yq; ()]},
E{We [yp; (1), ya; (D]}, E{We [yq;(£), yps (D]} } -
The selected energy measurement is guaranteed to be thelikas
Fig. 1: Block Diagram of the Multisensor Feature Extraction torted from all the cross-enegies produced in the secomdogtine

Scheme. described scheme. In addition, this procedure needs (@dly- 2)
computations instead af- ().
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we are led to the final inequallity

]F<mk)jy2 <Tmilhj, (14) Table1l Multisensor Feature Extraction

1. Use the Gabor filterbank described in Section 2 to proddice
bandpass signals for each one of ffieinput speech signals.
2. Estimate the short-time mean value of the cross Teagegieser

of all the (m, k) sensor pairs, for each one of thé bandpass sig-
4. FEATURE EXTRACTION BASED ON MINIMUM MEAN nals. The short-time averaging window has duratiol3@#.s and

CROSS TEAGER ENERGY the window shiftl0ms.

3. For every subband frame of the filterbank select the measscro
Teager energy measurement, amongzﬂﬁéf) results, with the min-
imum value.

4. Compute via the DCT transform the cepstrum coefficienthief t
log short-time mean cross Teager energies.

5. Keep only the first 12 coefficients;; — c¢12. The zero'th-
coefficient,co, augments the final feature vector as is also common
in a typical MFCC-based frontend.

which will be proved useful for the efficiency of the proposediti-
sensor feature extraction scheme.

Inspired by the above analysis and by the fact that the mean Te
ger energy of the bandpass signals has been used with sidiocess
single-channel feature extraction algorithms [7], we ps®a mul-
tisensor feature extraction algorithm which combines teelfits of
the “richer” acoustic information provided by the Teageemgy and
the benefits of the spatial information provided by the nptane
array.

In the proposed scheme our goal is to minimize the error térm o
Eqg. (12) which distorts the energy measurement of the clead-b
pass signak;(t). In order to minimize this term we have to min-
imize I'(,,,); Which is the concentration of the noise power within 4.1. Bandpass TEO Estimation

the passband of the filter. For thith subband, since we ha2e(%y) | this section we describe a method that produces more atecur
possible sensor pairs the microphone array, a straightforward way and smoother estimations of the bandpass Teager energyd8ja
to select the least distorted subband energy measurersémom-  provide a solution to reduce the computational complexftyhe
pute all the possible mean cross Teager energy measureofi¢hés  method.

form of (12), and choose the one which corresponds to the-mini  The continuous-time TEQOVP, combined with bandpass fil-
mum value. This energy measurement is clearly the one which itering and sampled at time instances= nT, is given by :
closer to the mean energy of the clean bandpass sigfigl. For W [y(t)] = 92(t) — y(t)ii(t) |i=nr, y(t) = 2(t) * g(t), where
example, to select the least affected energy measuremhiefith  4(¢) is the continuous time signal angt) the filter's impulse re-
subband we estimate the mean cross Teager energy of alliise pasponse. Since convolution commutes with time-differdiutig i.e.
[(m,k),j], m,k = 0,1,...,M — 1, and choose the one with the jt_: (x(t) % g(t)) = z(t) * %g(t)v n=1,2,..., operator¥ can
minimum value. This approach is justified by the fact thatrtfean  pe written as :

Teager energy of the bandpass source sigpalill remain the same 5 )

in all the measurements. The only term that will vary in thésyo ()] — {:c(t) . dg(t)] — (a(t) * g(t)) {m(t) L4 g(t)} _
mean cross Teager enerdy{ V. [ym;(t), yx; (t)]}, will be the er- di dt?

ror term of Eq. (12) due to the different percentage of noish@ |, qer to avoid the three convolutions which are time-conisig

various sgnsorﬁ of tt;_eda_rray. " . operations we can move, as proposed in [9], to the Fourieriom
. Based ont ese findings we propose a multisensor featuszextr \, here the convolution becomes multiplication. Then sin¢t®ids :
tion scheme which is summarized in Table 1 and illustratééign 1~ ;n ) =

as a block diagram. An issue that arises from the describ#abuiés g —— (Jw)"G(w) , we can compute the produdt(w)G(w)
its computational complexity, since for every subband fzame have ~ ©NC€ and use it three times. Thus the Teager Energy of a bssdpa
to compute2 - (1;1) results. However, if we consider the inequality signal can be estimated more efficiently if we express it as :
in Eg. (14), then we can succeed a significant reduction ofpecem
- h ) : . o B ' )
tations. According to (14), since the invoked quantities @ositives U [y(t)] = [}- 1 (X (w) - (]w)G(w)H
and reals, the value &f,,); will be atleast smaller than one Bf,.; . o o
andT'y,. Therefore, it is sufficient instead of computing all thepos - [FH{X (W) - GW)}] [F {X(w) - (jw)*G(w)}]
sible cross-results (step-2 of the algorithm) to compugelthmean

where with F and #~! we denote thdourier transform and its

Iwe care about the order of the sensor pairs since in generdnverse, respectively. In practice, tReurier operations are imple-
W [2(t), y(t)] # Ve [y(t), ()] mented via FFT’s.




5. ASR EXPERIMENTS AND RESULTS »
Table 22 Speech Recognition Results (Average Word Accuracy (%)

To validate the effectiveness of the proposed feature eioratech-  for Different Training/Testing Scenarios).
nique, we compare its performance with the single chanmétfes

TECC [7], which are also based on Teager Energies, and are ex- Correct Word Accuracies (%)

tracted from the central sensor of the array . For compasisoalso SNR/ clean| 20dB | 15dB | 10dB | 5dB 0dB
extract TECC features from the enhanced output after beamtig. Methods

In the last case we use two kinds of beamforming algorithnesayp MCTEE 98371 94691 85.70 | 74.46 | 6057 | 42.50

and Sum (DS) [10]_ and MVDR. This ap_proach of combi_ning the in- TECC 08.06 | 93.46 | 83.45| 69.66 | 54.03| 33.91
Coed [11) and can be considered as the-state ofthe art e | MYDR¥TECC | 98.26| 9307 84.58 | 60.21 | 5220 | 331
sor ASR. In these experiments we do not use the MFCCs fedtures DS+TECC 98.57] 94.79] 8403] 67.93] 51.69 | 34.53
order to base our comparisons on the same type of energyracel si
TECCs have shown to produce similar results with MFCCs.
The speech data set, used for the ASR experiments, is a dfibset ) ) . ) ) .
the TIDIGITS database. It contains about 1000 recordings 62 the multiresolution feature extraction algorithm will alork with
male and 52 female adult speakers contaminated by noiseiansa MFCC features. _ _
SNRs. The recordings are collected by a linear microphoreyar Acknowledgements :The authors wish to thank M. Matassoni
of 8 sensors with 2 cm spacing between adjacent sensorsaat-a s 21d P- Svaizer, at FBKITC-IRST, for kindly providing the rtisin-
pling frequency of 16 KHz. The desired speech source isipagid ~ SOF SPeech database, and D. Dimitriadis, at NTUA, for hélgis:
directly in front of the array at a distance of3 m from its cen- ~ CuSSions about TECC features.
ter. The experiments are performed using the HTK systentégon
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