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Abstract

We address the problem of tracking continuous levels of a participant’s activation, valence and dominance during the
course of affective dyadic interactions, where participants may be speaking, listening or doing neither. To this end,
we extract detailed and intuitive descriptions of each participant’s body movements, posture and behavior towards
his interlocutor, and speech information. We apply a Gaussian Mixture Model-based approach which computes a
mapping from a set of observed audio-visual cues to an underlying emotional state. We obtain promising results for
tracking trends of participants’ activation and dominancevalues, which outperform other regression-based approaches
used in the literature. Additionally, we shed light into theway expressive body language is modulated by underlying
emotional states in the context of dyadic interactions.

Keywords: continuous emotion tracking, dimensional emotional descriptions, Gaussian Mixture Model mapping,
body language, improvised dyadic interactions

1. Introduction

Human expressive communication is characterized
by the continuous interplay of multimodal information,
such as facial, vocal and bodily gestures, which may
convey the participant’s affect. The affective state of
each participant can be seen as a continuous variable
that evolves with variable intensity and clarity over the
course of an interaction. It can be described by cer-
tain continuous attributes (dimensions): activation, va-
lence and dominance. Activation describes how intense
is the emotional experience, valence describes the level
of pleasure related to an emotion, and takes positive
and negative values for pleasant and unpleasant emo-
tions respectively, while dominance describes the level
of control of a person during an emotional experience.
This approach was introduced in psychology research
based on evidence that humans may perceptually use
such a representation to evaluate emotional situations
[1, 2, 3]. It may also be a more generic way to classify
emotions, especially for emotional manifestations that
may not have a clear categorical description.
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This work addresses the problem of continuous track-
ing of activation, valence and dominance, when they
are considered to be continuously valued. Our goal is
to obtain a continuous description of each participant’s
underlying emotional state through the course of an im-
provised dyadic interaction. Our experimental setup is
generic; participants express a wide variety of emotions
that are not pre-defined but are elicited through their in-
teraction, and have varying roles throughout the perfor-
mance (speaker, listener, neither). This approach has
the potential to shed light into the temporal dynamics of
emotions through an interaction and highlight regions
where abrupt emotional change happens. These could
be viewed as regions of emotional saliency.

Our contributions could be summarized as follows:

1. We present a statistical framework to dynamically
track the emotional content that is displayed over
time by participants of an interaction, using bodily
and vocal information.

2. We systematically examine how body language be-
havior is modulated by underlying emotional states
in dyadic interactions.

3. We discuss the data annotation design for continu-
ous ratings, which is a challenging problem in it-
self.
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We apply a Gaussian Mixture Model (GMM) based
methodology, originally introduced in [4], to compute
an optimal statistical mapping between an underlying
emotional state and an observed set of audio-visual fea-
tures, both evolving through time. Extending our previ-
ous work [5], we formulate the emotion tracking prob-
lem at various time resolutions, to investigate the ef-
fect of the tracking detail on the final performance. For
our experiments, we use the USC Creative IT database
which contains detailed full body Motion Capture (Mo-
Cap) information in the context of expressive theatrical
improvisations [6]. We extract a variety of psychology-
inspired body language features describing each partic-
ipant’s body language and relative interaction behaviors
with respect to their interlocutor. We systematically ex-
amine the relevant emotional content of each feature to
select body language feature sets tailored to each emo-
tional attribute. In addition to emotion tracking, our
goal is to examine the way expressive body language is
modulated in order to reflect different emotional states.
This allows us to revisit qualitative psychological obser-
vations from a quantitative perspective.

Finally, the data annotation design is an important
part of the data preparation, since continuous tagging
is a challenging task and often results in low inter-
evaluator agreement. Our annotation results show that
people tend to agree more on the trends rather than the
absolute values of emotional attributes. This suggests
that humans find it more straightforward to define emo-
tions in relative (e.g., more activated, more dominant),
rather than absolute terms (similar observations are de-
scribed in [7]).

Our experimental results indicate that we are bet-
ter at tracking changes in emotional attributes rather
than the absolute values themselves, following a similar
trend as the human annotations. Furthermore, the pro-
posed GMM based tracking method outperforms other
examined methods, in terms of correlation-based per-
formance metrics (estimating trends of attributes). For
activation trends, the tracking performance is close to
human agreement, while for dominance we achieve en-
couraging results. Body language seems to carry rich
activation and dominance related information, reflected
in features such as body and hand movement, orienta-
tion and approach-avoidance behaviors.

2. Related Work

The use of dimensional representations of emotions
has been adopted by many researchers but typically the
dimensional values are quantized into discrete levels.
However, a continuous representation may allow a more

generic and flexible treatment of emotions. Examples
of work that avoid discretizing the emotional dimen-
sions include [8, 9] where regression approaches, such
as Support Vector Regression (SVR), were used to es-
timate continuous dimensional attributes from speech
cues of presegmented utterances.

Most of the existing literature, including works that
focus on recognition of emotions as part of an emotion
sequence [10, 11], presegment the time dimension into
units for recognition, e.g., consecutive words or utter-
ances. Few works have avoided segmenting the tempo-
ral dimension and have addressed the problem of con-
tinuously tracking emotions across time. For example,
in [12] the authors present continuous recognition of the
emotional content of movies using a Hidden Markov
Model (HMM) which classifies dimensional attributes
into discrete levels.

A relatively small amount of literature treats both
time and emotion variables as continuous. In [13] the
authors describe a multimodal system to continuously
track valence and activation of a speaker, using SVR
and Long-Short Term memory (LSTM) regression, with
LSTM being the best performing approach. Similarly,
single-modality systems were proposed in [14, 15] us-
ing SVR and LSTM neural networks for regression
to continuously estimate valence and activation val-
ues from emotional speech. An unsupervised method
for mapping the emotional content of movies in the
valence-activation space was proposed in [16, 17] using
low-level audio and video cues. In our work, we pro-
pose a supervised, GMM-based methodology to contin-
uously track an underlying emotional state using body
language and speech information.

The use of multimodal information allows for a more
complete description of the expressed emotion, there-
fore many works utilize both facial expressions and vo-
cal cues [18, 19], while an increasing amount of re-
cent literature investigates body language. In [20, 21]
the authors use upper body language information along
with facial expressions to recognize emotions, while in
[13] shoulder movement cues were used along with fa-
cial and vocal cues for continuous emotion tracking. In
[22] authors investigate a variety of upper body descrip-
tions of movement and symmetry in order to extract
a minimal representation of affective gestures. Works
that examine affective full body language include [23]
where authors advantageously use full body motion
cues, alongside facial and vocal information, and [24]
where authors use features describing movement qual-
ity to classify basic emotional states. In [25], authors
use the setup of a body-movement-based videogame
and recognize emotions such as defeat, triumph etc., us-
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ing MoCap derived features. Few works have addressed
body language behavior in the context of social interac-
tion, for example the work in [26], that examines dom-
inance and synchronization phenomena during collabo-
rative social tasks, and [27] where measures of posture
are used to examine approach-avoidance behaviors dur-
ing the interaction of two seated participants.

Various body language feature sets have been pro-
posed in the literature, ranging from lower-level fea-
tures such as joint angles [25, 28], to more interpretable
features such as distances and angles between body
parts [29, 30] and this work, to higher-level posture
and movement properties (contraction index, smooth-
ness/fluidity of motion) [22, 24]. An overview of vari-
ous body language features in the literature can be found
in [31]. In this work we extract a large set of inter-
pretable body language features, which measure prop-
erties of a person’s posture, motion, and body behavior
with respect to the interlocutor. Although there seems
to be no standard feature set for body language, several
body language features in the literature measure similar
qualities. For example, in [29] authors measure horizon-
tal and vertical distances between a subject’s hands and
shoulder, while here we compute the relative positions
of a person’s hands with respect to his torso.

Our work lies in the intersection of many of the above
areas; we address the issue of emotion tracking when
both the emotion and time dimensions are continuous,
using full body language features and speech informa-
tion. Body language is examined in the context of af-
fective dyadic interactions. Additionally, our setup is
generic; the examined subjects are not restricted to pro-
duce specific emotions or body gestures. On the con-
trary, through their improvisation a wide variety of emo-
tional states, body language gestures and interaction dy-
namics are elicited in a naturalistic manner.

3. Framework Overview

3.1. Overview

Figure 1 presents a summary of our work. As il-
lustrated in the left of Fig. 1, our study relies on
video, audio and MoCap data collected from two ac-
tors engaged in emotional dyadic improvisations. The
center part of Fig. 1 describes the data processing,
specifically the extraction of detailed body language and
speech information from both participants, as well as
the data annotation. Data annotation was performed by
multiple human evaluators who were asked to continu-
ously rate the perceived valence, activation and domi-
nance levels of each participant during each interaction.
The result is multiple emotional curves which are av-
eraged to provide the ground truth for further experi-

ments. After these steps, we have available for each par-
ticipant various body language featuresxbody extracted
throughout the interaction, speech featuresxspeech ex-
tracted from regions where that person is speaking, and
the corresponding emotional curvesy. The joint dis-
tribution P(x, y) is modeled using a Gaussian Mixture
Model (GMM), wherex can be a visual or audiovisual
feature vector andy is one of the three emotional at-
tributes. The conditional distributionP(y|x) is also a
GMM. The GMM-based tracking approach consists of
computing a mapping from the observed features to the
underlying emotional curve by maximizing the condi-
tional probability of the emotion given the features, e.g.,
ŷ = arg maxP(y|x). In the right part of Fig. 1 we present
an example of the resulting emotional curve estimate.

3.2. Framework for continuous tracking of emotional
states and emotional changes

Let xt denote the vector of body language and speech
observations at timet of an interaction recording and
yt be the underlying emotional attribute, namely activa-
tion, valence or dominance. One way to predictyt given
xt would be by maximizing the corresponding condi-
tional probability:

ŷt = arg max
yt

P(yt|xt, λ
(y,x)) (1)

assuming a specific modelλ(y,x) for two concurrent in-
stantiations ofx and y. However, given the continu-
ous nature of the involved variables, it would be ben-
eficial to incorporate dynamic information in this esti-
mation. This can be achieved by also jointly model-
ing the first and second temporal derivatives ofyt and
xt, denoted here as∆yt, ∆2yt and ∆xt, ∆2xt respec-
tively. By replacingyt with Yt = [yt,∆yt,∆

2yt]T and
xt with Xt = [xT

t ,∆xT
t ,∆

2xT
t ]T , the optimal estimate

ŷ = [y1, . . . , yt, . . . yT ] of the emotional flow for the
course of the interaction can be found as:

ŷ = arg max
y

P(Y|X, λ(Y,X)), (2)

whereX = [XT
1 ,X

T
2 , . . . ,X

T
t , . . . ,X

T
T ]T is the sequence

of the dynamic information-augmented features and
Y = [YT

1 ,Y
T
2 , . . . ,Y

T
t , . . . ,Y

T
T ]T the corresponding

emotional attribute and its derivatives for the entire in-
teraction. Following the paradigm that was originally
introduced for voice conversion [32], we consider the
modelλ(Y,X) of the joint probability of (Yt,Xt) to be a
Gaussian Mixture Model (GMM):

P(Yt,Xt|λ
(Y,X)) =

M
∑

m=1

amN([Yt
T ,Xt

T ]T ; µ(Y,X)
m ,Σ(Y,X)

m ) (3)
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Figure 1:An overview of the work presented in this paper. From left to right we depict the data collection setting, the
audio-visual feature extraction and data annotation processes, as well as the GMM-based statistical mapping approach
that we follow for estimating the emotional curves.

with am, µ(Y,X)
m and Σ(Y,X)

m being each component’s
weight, mean and covariance respectively:

µ(Y,X)
m =

[

µ
(Y)
m

µ
(X)
m

]

,Σ(Y,X)
m =

[

Σ
(YY)
m Σ

(YX)
m

Σ
(XY)
m Σ

(XX)
m

]

. (4)

The conditional probability in (2) can be written as [32]:

P(Y|X, λ(Y,X)) =
∑

over all m

P(m|X, λ(Y,X))P(Y|X,m, λ(Y,X))

≈

T
∏

t=1

M
∑

m=1

P(m|Xt, λ
(Y,X))P(Yt|Xt,m, λ

(Y,X)) (5)

wherem = [m1, . . . ,mt, . . . ,mT ] is a sequence of mix-
ture components and:

P(m|Xt, λ
(Y,X)) =

amN(Xt; µ
(X)
m ,Σ

(XX)
m )

∑M
i=1 aiN(Xt; µ

(X)
i ,Σ

(XX)
i )

(6)

P(Yt|Xt,m, λ
(Y,X)) = N(Yt;E

(Y)
m,t,D

(Y)
m ). (7)

and:

E
(Y)
m,t = µ

(Y)
m + Σ

(YX)
m Σ(XX)−1(Xt − µ

(X)
m ), (8)

D(Y)
m = Σ

(YY)
m − Σ(YX)

m Σ(XX)−1
m Σ(XY)

m . (9)

Estimation of the underlying emotional flow ˆy for the
entire utterance can finally be achieved based on (2)
via Expectation Maximization as described in detail
in [32, 4]. The initial estimate is just the Minimum
Mean Squared Error (MMSE) estimate based on the
conditional probability distribution (5) without using
dynamic information. Due to the use of dynamic infor-
mation in the estimations, the final estimate at each time
instant ends up being affected by the entire sequence of
observations. It has been shown that in the case of a sin-
gle Gaussian Model the incorporation of derivatives in
an analogous scenario corresponds to fixed-lag Kalman
smoothing [33]. The lag depends on the window length
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2L−1 over which the derivatives are approximated (sec-
ond derivatives are computed by applying (10) to the
first derivatives):

∆yt =

∑θ=L
θ=−L θ(yt+θ − yt−θ)

2
∑θ=L
θ=−L θ

2
. (10)

This scheme has been successfully applied for voice
conversion [32], lip movement - speech synchronization
[34] and acoustic to articulatory speech inversion [4].
Speech inversion refers to the problem of recovering the
underlying articulation during speech production from
just the observed speech acoustics. In a similar way,
herein, we are trying to recover the underlying emo-
tional state as it is represented by activation, valence
and dominance from the observed body language and
speech observations.

4. Database and Annotation process

4.1. Database Description

We use the USC CreativeIT database which is a mul-
timodal database that combines engineering and theatri-
cal approaches [6]. It contains a variety of dyadic the-
atrical improvisations and represents an opportunity to
systematically study verbal and non-verbal expressions
in affective interactions. Performances are either im-
provisations of scenes from theatrical plays or theatri-
cal exercises where actors repeat sentences in a manner
that conveys specific intent (e.g., accepting or rejecting
behavior towards other). However, the actors were not
instructed to produce specific emotions. Instead, we ex-
pect a variety of emotional expressions and interaction
dynamics to occur as part of the performance. This de-
sign makes the emotional manifestations of the database
especially challenging to analyze, since they are more
subtle and diverse. The theatrical design was performed
by a theater expert (director/teacher), and the participat-
ing actors were senior theater students, who first had to
pass an audition. The performances were recorded un-
der the guidance of the theater expert in order to ensure
high quality performances. Further data collection de-
tails can be found in [6].

The database contains multimodal information from
the vocal and body language behavior of the actors ob-
tained through close-up microphones, Motion Capture
(MoCap) cameras and HD cameras. Each actor wore a
special suit and 45 MoCap markers were placed across
his/her body, as illustrated in Figures 2(a) and (b). The
performances were recorded by 12 Vicon MoCap cam-
eras placed on the ceiling of the recording room, as
well as two HD cameras located at each corner of the
room. In this work we use data from 16 actors, 9 female

and 7 male; 6 out of 8 dyads performed 6 improvisa-
tions, and the remaining two dyads performed 7 impro-
visations, resulting in 50 improvisations total. The ex-
tra improvisations were performed after the theater pro-
fessor’s request, who judged that those dyads’ perfor-
mances were excellent, and asked for an additional per-
formance. Improvisations range from 2 to 10 minutes,
while on average about 40% of an improvisation con-
tains speech from one of the two participants. We cap-
ture audio-visual data from both actors in each improvi-
sation, therefore we have a total of 100 actor-recordings.
Our modeling is based on features which are extracted
from MoCap and speech information. The videos of the
performances have only been used for the data annota-
tion process.

4.2. Annotation Process

The CreativeIT performances contain a variety of
emotional manifestations. Each participant’s emotional
state is mapped into dimensional labels of activation,
valence and dominance, which provides a continuous
and generic description of the expressed emotions. Un-
like speech-centric emotion databases (i.e., IEMOCAP
[35] and VAM [8]), where it is common to segment a
conversation into sentences as basic units for examin-
ing emotional content, in CreativeIT each performance
is characterized by an unflolding flow of body ges-
tures. This makes segmentation into sentences rather
arbitrary. Therefore we decided to collect continuous
annotations throughout each interaction, without seg-
menting the recordings, using the Feeltrace instrument,
which allows real-time continuous annotation of video
content [36]. Annotations are collected for each emo-
tional attribute and for both actors of each performance,
by watching the corresponding video recordings.

The problem of emotional data annotation has been
addressed in other works including [25], where authors
measure evaluator agreement through repeatedly com-
paring evaluator subsets, and [37] where the notion of
implicit annotation is discussed. Here, the continuous
nature of the annotation task represents an additional
challenge in terms of obtaining agreement. Further-
more, recordings are long and require constant attention
from the annotator, while the actors express a wide vari-
ety of emotions and have different roles throughout the
interaction (speaker, listener, neither). Consequently,
inter-annotator agreement is hard to achieve, as we ob-
served in our previous work using a subset of the Cre-
ativeIT data [5]. Similar challenges have also been re-
ported in other engineering studies that use continuous
annotations [12], or examine expressive body language
using discrete labels [38, 25].
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(a) Marker positions. (b) Actor wearing markers. (c) Definition of body parts.

Figure 2:The positions of the Motion Capture markers and definitions of the body parts used in feature extraction

For our current study, we recruited psychology stu-
dents, most of whom had previous experience in emo-
tional annotation. Annotators were further trained by
a short instruction session where Feeltrace was intro-
duced and the definitions of activation, valence and
dominance attributes were explained through examples.
Annotators watched many recorded performances in ad-
vance in order to get an idea of the data. They per-
formed their first annotations multiple times to familiar-
ize themselves with Feeltrace and were later encouraged
to perform each annotation as many times as needed un-
til they were satisfied with the result. Since annotations
are done real-time, there is expected to be a person-
specific delay between the time that an event happens
and when its emotional content is annotated. In order
to reduce this delay, we modified the Feeltrace interface
so that annotators can focus on one attribute each time,
rather than two attributes, as was initially proposed in
[36]. A snapshot of the modified Feeltrace interface for
activation annotation is presented in Fig.3. The anno-
tation is perfomed by moving the mouse, shown as a
full circle, along the horizontal line, while watching the
performance video in a separate window.1 To further
reduce person-specific delays, we also instructed anno-
tators to watch each video multiple times and have a
clear idea of the emotional content before starting the
real-time annotation.

In Figure 4 we present a segment of the activation an-
notations of an actor provided by three annotators, and
their average which is used as the ground truth. Note
that although annotators agree on the trends of the acti-
vation curve (mean correlation of 0.67), and recognize

1Currently a one-dimensional version of Feeltrace is publicly
available, in software Gtrace [39]. This software became available
when we were midway in our data annotation, and we decided to keep
our own modified Feeltrace version for consistency.

Figure 3: Screenshot of the modified Feeltrace interface.

pronounced activation events, they do not agree on the
actual activation values. Similar observations hold true
for many of our obtained annotations. This suggests that
people tend to agree more when describing emotions in
relative terms, e.g., whether there has been an increase
or decrease, rather than in absolute terms (an observa-
tion which agrees with the literature, e.g., [7]). This mo-
tivated us to focus on the annotation trends, and to use
correlation metrics, such as linear correlation, to mea-
sure evaluator agreement and the performance of the
emotion tracking algorithms.

Seven annotators participated in total, rating over-
lapping portions of the database, so that each actor-
recording would be rated by three or four people (88
out of the 100 actor-recordings were rated by 3 people).
For computing the annotator correlations we set a cut-
off threshold for defining acceptable annotator agree-
ment. For each actor-recording, we take the union of
all annotator pairs with linear correlations greater than
the threshold; this annotator subset is used to compute
the ground-truth for the corresponding actor-recording,
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Figure 4: Example of activation rating by three annota-
tors.

by taking the average of the selected annotations. If
no annotators are selected then we exclude that actor-
recording from our analysis. Our threshold is empiri-
cally set to 0.45, which results in selecting 80, 84 and
73 actor-recordings for the activation, valence and dom-
inance class respectively, out of 100 in total (the rest
were excluded from further analysis). The annotator
agreement measure is computed by first computing the
mean of the correlations between the selected annota-
tors per actor recording, and then computing the median
over all actor recordings. Median annotator correlations
reached 0.59, 0.62 and 0.60 for activation, valence and
dominance respectively (these numbers are higher than
the ones achieved by our previous annotation effort [5]).

Our choice of averaging multiple annotations to pro-
vide ground truth is a common approach in the emo-
tion recognition community, but could be problematic
in cases when the actual attribute value is of interest,
since different annotators often have different internal
rating scales. Here we reduce the extent of this prob-
lem by focusing on the trends of the average curve; the
trends of the evaluator curves are not affected as much
by the mean operation and could be a more robust in-
dicator of the underlying ground truth (see also Fig.4).
However, effectively fusing multiple annotators’ subjec-
tive judgements is an important research problem (e.g.,
see [40, 41]), and a direction for future research. Also,
the issue of person-specific delays is a challenging issue
and is worth further investigation in the future, e.g., by
means of targeted experiments measuring such delays
among annotators.

5. Feature Extraction and Selection

5.1. Body Language Feature Extraction

Our body language features are extracted from full
body MoCap data (the performance videos are only

used for data annotation). From now on, we will also
refer to these MoCap features as visual features, since
they are visually perceived. The choice of features is in-
spired by the psychology literature which indicates that
behaviors such as looking at the interlocutor, approach-
ing, touching, as well as body postures such as looking
down, and hand gestures carry emotional information
[42]. The features are extracted for each person, and
they are either absolute descriptions of a person’s pos-
ture and movement, or relative descriptions of his body
behavior with respect to his interlocutor (in the latter
case data from both people are used for the feature ex-
traction).

In total, we examine 53 body language features, ex-
tracted at the MoCap framerate (60 fps) and smoothed
using a median filter. This comprehensive feature set
is summarized in Table 1, and may contain correlated
or redundant features; decorrelated feature subsets will
be later chosen through feature selection. Features are
extracted in a geometrical manner from the positions of
the MoCap markers, by defining global and local coodi-
nate systems and measuring 3D distances, velocities and
angles. These features are potentially informative ei-
ther individually or in combination with each other. Our
modeling framework can exploit such feature relations,
as explained in Section 6.1. The origin of the global
coordinate system is roughly the center of the record-
ing space, while local coordinate systems for each actor
are defined using the four waist markers, as shown in
Fig.2(c). The positions of the various body parts are
illustrated in Fig.2(c). For example, one’s center is de-
fined as the average of the four waist markers.

Certain features are particularly influenced by
person-specific bodily characteristics. For example the
z-coordinates of a person’s upper and lower back, which
may reflect crouching and sitting are influenced by
the person’s height. Therefore, features that are z-
coordinate positions are normalized by dividing by the
actor’s median height in each recording. Additionally,
features that are (x,y,z) positions of hands in one’s co-
ordinate system are normalized by dividing by the per-
son’s median arm length in each recording, measured by
the median distance between shoulder and hand mark-
ers. All normalized features are denoted as ‘norm’ in
Table 1. Apart from that, we do not perform any normal-
ization of person-specific emotional variability, since
our person-independent setup does not assume any prior
information about the expressive characteristics of a test
subject. Normalizing for such person-specific emotion
variability would be an interesting future direction.

Figure 5 illustrates some example features. For in-
stance, as shown in Fig.5(a), the position of one’s center
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(a) Hand positions. (b) Relative movement. (c) Looking towards or away.

(d) Leaning front/back, and leaning towards/away from Other. (e) Arm angles and description of arms crossed .

Figure 5:Examples of extracted features from MoCap markers.

is measured in the global system to decsribe his loca-
tion, while positions of one’s hands are measured in his
local coordinate system to describe his hand gestures.
An individual’s absolute velocity is computed from the
movement of his center, while relative velocity is com-
puted by projecting the velocity vector in the direction
between the two participants (Fig.5(b)). A description
of one’s looking behavior relative to his interlocutor
is computed from the angle between the orientation of
one’s head coordinate system and the direction between
the heads of the participants (Fig.5(c)). A description of
one’s relative body orientation can be obtained similarly
by looking at the people’s waist coordinate systems in-
stead. In Fig. 5(d), the angle between a person’s spine
and his local z-axis describes his leaning front/back be-
havior, while the angle between one’s spine and the di-
rection between the centers of the participants describes
relative leaning behavior (towards/away). The angles of
one’s arms with his local x-axis, describe hand position
and indicate arms crossing behavior (Fig. 5(e)).

5.2. Feature Selection Approaches
We examine a variety of feature selection approaches

to select a subset of decorrelated, informative body lan-
guage features, tailored to each emotional attribute.

Mutual Information-based and Correlation-based
criteria: The minimal redundancy maximal relevance
criterion (mRMR), introduced in [43], selects features
that maximize the mutual information (MI) between
features and the ground truth, and minimize the MI be-
tween the selected features. LetS M = {xi}

M
i=1 be a set

of M continuous body language features,y the contin-
uous emotional attribute, andI(·, ·) represent MI. Then
the mRMR measure is defined:

mRMRI(i) = I(xi, y) −
1

M − 1

∑

x j∈S M , j,i

I(xi, x j) (11)

where I(xi, y) =
∑

xi∈Xi

∑

y∈Y

p(xi, y)log(
p(xi, y)

p(xi)p(y)
) (12)

Estimation of the probability distributions
p(xi), p(y), p(xi, x j) and p(xi, y), which is required
for computing the MI values, is performed through
uniform quantization.

We also examine the selection of maximal relevance
and minimal redundancy features based on correlations
rather that MI values. Specifically, if we denote as
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Table 1:Body language features extracted from actor A during his interaction with actor B. Features are denoted as individual when they describe
only A’s movement and posture information, and as interaction features when they describe the relative movement and posture of A with respect to
his interlocutor B. Norm indicates that the corresponding feature has been normalized per actor recording.

A’s velocity (individual)

• A’s velocity (see Fig. 5(b))
• velocity of A’s right/left arm
• velocity of A’s right/left foot

• relative velocity of A’s right/left arm w. respect to A
• relative velocity of A’s right/left foot w. respect to A

A’s body posture (individual)

• A’s body leaning angle front/back (see Fig. 5(d))
• A’s body leaning angle right/left
• A’s body position in global coord. system: x,y, norm z coordi-

nates (see Fig. 5(a))
• A’s right/left hand position in A’s local coord. system: norm x,y,z

coordinates (see Fig. 5(a))
• distance between A’s right and left hand
• angle of A’s right/left hand with x -axis in A’s system (indicating

arms crossed, see Fig. 5(e))

• head angle, looking up/down
• distance between A’s right/left hand and A’s chest
• distance between A’s right/left hand and A’s right/left hip
• angle between A’s right and left hands
• norm z coordinate of A’s right/left knee (indicating kneeling)
• z coordinate of A’s right/left foot (indicating jumping)
• norm z coordinate of A’s upper back (indicating upward vs

crouched posture)
• norm z coordinate of A’s lower back (indicating sitting down)

A’s distance from B (interaction)

• A’s distance from B
• Min. distance between A’s right/left hand and B’s hands
• Min. distance between A’s right/left hand and B’s torso

• Min. distance between A’s right/left hand and B’s head
• Min. distance between A’s right/left hand and B’s back

A’s velocity with respect to B (interaction)

• A’s relative velocity w. respect to B (see Fig. 5(b))
• Relative velocity of A’s right/left hand w. respect to B

• Relative velocity of A’s right/left foot w. respect to B

A’s orientation with respect to B (interaction)

• Angle of A’s face w. respect to B (see Fig. 5(c))
• Angle of A’s body w. respect to B (similar to Fig. 5(c), but for

waist coord. systems)

• A’s leaning angle towards or away from B (see Fig. 5(d))
• Position of A in B’s coordinate system

C(xi, y) and C(xi, x j) the linear (pearson) correlations
between a feature and the ground truth, and between the
two features, respectively, we can define the correlation-
based metric as follows:

mRMRC(i) = C(xi, y) −
1

M − 1

∑

x j∈S M , j,i

C(xi, x j) (13)

Both approaches perform a ranking of features, where
high values are preferred and they denote that the fea-
ture shares much information, or has high correlation,
with the ground truth and shares little information, or
has low correlation, with other selected features.

Fisher Criterion: Alternatively, we select features
that discriminate between regions of high, low and
medium values of the emotional ground truth. Intu-
itively these features reflect different body language
behaviors across regions of different emotional con-
tent. Each attribute is quantized into three levels
through k-means clustering, and the features that cor-
respond to each level are collected. Fisher criterion,
denoted asFvalue, is the ratio between the within-class
variance and the between-class variance for a feature,
and scores highly those features that achieve small
within-class variability and large between-class vari-
ability [44]. While the previously described correlation
and MI based methods favor the selection of feature sets

with low redundancy, the Fisher criterion may lead to re-
dundant feature sets. Therefore, we further reduce our
feature set, by excluding features, such that no feature
pair has a correlation higher than a threshold (here we
empirically selected a threshold of 0.8). When choosing
between two competing, highly-correlated features, we
pick the one with the largestFvalue.

5.3. Vocal Feature Extraction

In contrast to body language features which are ex-
tracted throughout the recording session, the acoustic
features are extracted only when the actors are speak-
ing. For this purpose, the microphone signal obtained
from each actor is first manually transcribed into regions
where that actor is speaking and being silent. We ex-
tract 12 Mel Frequency Cepstral Coefficients (MFCCs)
along with pitch and energy, using overlapping windows
of length 30msec and framerate of 16.67msec (same
as MoCap framerate). Such features are standard for
speech emotion recognition [45].

6. Tracking Emotion Trends at Multiple Resolutions

6.1. GMM-based tracking at frame and window level

Our GMM-based tracking approach follows the
mathematical framework described in Section 3.2. Ad-
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ditionally, it takes into account that body language fea-
tures are available throughout the interaction, while
speech features are available only when the actor is
speaking. Therefore, when audio-visual features are
considered we compute two mappings: a visual map-
ping trained only with body language features and an
audio-visual mapping trained with both body language
and speech features. The audio-visual features are fused
at the feature-level for training the audio-visual GMM.
During testing, we apply the GMM mapping on over-
lapping windows. When only visual features are used
we compute the visual mapping on each window irre-
spective if whether the window contains speech or not.
When audio-visual features are used, we compute an
audio-visual mapping for the windows where speech
is present, otherwise we compute a visual mapping.
Therefore, we again scan the total recording using vi-
sual information and, if available, speech information.
As a result, the results of the visual and audio-visual
experiments are comparable as they are computed on
the same recordings, and the audio-visual results pro-
vide information about whether speech improves emo-
tion tracking on top of the visual information.

Empirically, we confirmed that including dynamic
features produces a smoother emotional trajectory esti-
mate, since it considers a window of the emotional state
and the feature vector centered at the frame of interest.
In our implementation, the underlying emotional trajec-
tory yt, t = 1, . . . , T is estimated over consecutive over-
lapping windows of length 300 frames, with 150 frames
overlap. Then curves obtained from neighboring win-
dows are merged using the add-overlap algorithm, and
are smoothed using a low-pass filter.

This approach computes detailed frame-by-frame
emotional trajectory estimates. However, emotional
states are slowly varying, therefore this degree of accu-
racy may not be necessary. Modeling body and speech
features at such detail may lead to modeling of noise
or gestures unrelated to emotion rather that emotionally
informative audio-visual manifestations. This motivates
the use of window-level tracking, where features and
feature functionals are extracted over larger windows in
an attempt to capture more meaningful emotional and
gestural dynamics. In this case, the mapping function
takes as input the functionals computed over a win-
dow and outputs the average emotional attribute value
of that window. Specifically, we average the ground
truth curves over overlapping windows of 3sec length
and 2sec overlap. We also apply such windows on the
audio-visual features, over which we extract a variety of
statistical functionals, specifically: mean, standard de-
viation, median, minimum, maximum, range, skewness,

kurtosis, the lower and upper quantiles (corresponding
to the 25th and 75th percentiles) and the interquantile
range. Therefore, we extract a potentially richer feature
description by including statistical functionals over fea-
tures. The feature vector dimensionality is reduced by
PCA.

We train full covariance GMMs using 4 and 2 mix-
tures for frame and window-level tracking respectively
(the method is not sensitive to the number of gaussian
mixtures). The use of a full covariance matrix is im-
portant in order to capture relations between the vari-
ous body language and speech features, and empirically
leads to better performance. The joint feature-emotion
GMM models were trained using the HTK Toolbox
[46], while the subsequent EM equations for computing
the statistical GMM-based mapping were implemented
in matlab, based on [4].

6.2. Using LSTM neural networks for regression

Long Short Term Memory (LSTM) neural networks
were introduced in [47], as a variant of Recurrent Neu-
ral Networks (RNN). While RNNs are able to model
a certain amount of history through their cyclic con-
nections, it has been shown that longer range history
is inaccessible to RNNs since the backpropagated error
either blows up or decays over time (vanishing gradi-
ent problem). LSTM networks overcome the vanishing
gradient problem by storing in their hidden layers in-
formation from an arbitrarily long amount of time [47].
LSTM networks have been applied in a variety of pat-
tern recognition applications, including phoneme clas-
sification [48], audio-visual emotion classification [49],
and regression for tracking continuous emotions [13].
Modeling history seems to be beneficial for the problem
of emotion tracking, since emotions tend to be slowly
varying over time, and LSTM regression was shown to
outperform Support Vector Regression (SVR) for con-
tinuously tracking valence and activation over time [13].
Here, we apply LSTM networks for both the frame and
the window level regression problems.

LSTM networks for regression are trained using the
RNNlib Toolbox [50], without using derivative features.
Including derivatives was deemed redundant since tem-
poral information is already captured through the net-
work. The LSTM networks consist of one hidden layer
with 128 memory blocks (we also experimented with
64 and 256 memory block configurations, which per-
formed similarly). To improve generalization low Gaus-
sian noise was added to the training features. The pro-
duced curves are smoothed using a lowpass filter.
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6.3. Baseline based on simple functions of informative
features

A relevant question is what would be the tracking
performance if we estimated an attribute, e.g., activa-
tion, as a simple function of informative features, e.g.,
velocity of body, of hands, intensity of voice, leaning
angle towards interlocutor etc. Indeed such approaches
are common in the behavioral sciences, where for in-
stance speech intensity and pitch are sometimes used as
indicators of vocal activation [51]. Along these lines,
assuming that an interlocutor’s emotional attributes and
his audiovisual features are normalized to be roughly in
the same range, we could compute an estimate of his ac-
tivation by taking a functional (e.g., mean) of the most
activation-informative features. If a feature is negatively
correlated with activation then we multiply it with -1
beforehand. This method does not require training a
model, however it assumes that we have available a set
of informative features for each attribute, which can be
chosen through feature selection e.g, by using the ap-
proaches of Section 5.2, or through prior knowledge.
This simple baseline could be useful for cases were we
have few or no annotated data.

In our implementation, we select the K most infor-
mative body features for each attribute, based on the
Fvalue, and the L most informative speech features based
on correlation with the attribute (results based on the
mRMRC criterion are similar and are omitted for lack
of space). All the features and the emotional attributes
are first normalized to have zero mean and unit standard
deviation across the database, and features that are neg-
atively correlated with the emotional attribute are mul-
tiplied with -1. Then we compute the mean, median
and maximum of these features as different attribute es-
timates (please refer to the Appendix for a list of the
most informative body language features per attribute).
For the window-level tracking, we follow the same ap-
proach using normalized statistical functionals of body
and speech features extracted over windows, so as to
directly compare with the methods of Sections 6.1 and
6.2. Again, we select the K most correlated functionals
of body features and the L most correlated functionals
of speech features.

7. Experiments, Results and Discussion

Our experiments are organized in an eight-fold leave-
one-dyad-out cross validation. Actors belong only to
one dyad, therefore this cross validation ensures that test
set actors are not seen during training. Each dyad was
recorded in each of eight recording days, and since the

selected number of recordings per day vary, this results
in 5-12 actor recordings selected for testing at each fold,
while the rest are used for training. We focus primarily
on tracking the underlying emotional trends, and there-
fore we compute the correlations between the ground
truth and the estimated emotional trajectories as our pri-
mary performance metric.

The body language feature sets are selected through
the correlation-based criterionmRMRC or the Fisher
criterion Fvalue (the MI-based criterionmRMRI gave
slightly lower performance and is omitted). We sys-
tematically examine the effect of the number of body
language features on the performance of each tracking
approach, by selecting the top 5, 10, 15, · · ·30 features
for themRMRC criterion, and the top 10, 15, · · ·40 fea-
tures for theFvalue criterion (which are later further re-
duced after removing highly correlated features). The
performance of the GMM-based and LSTM frame-level
tracking as a function of the number of selected body
features is shown in Fig. 6. This approach represents
a principled way to select the final number of features
based on visual frame-level tracking performance, al-
though could cause some amount of overfitting. Note
however that the selected number of features is not nec-
essarily optimal for the audio-visual and window-level
tracking, since some of the body language features that
are left out may be important when used in combination
with speech, or may have informative statistical func-
tionals. To underscore this point, we present an example
of valence tracking at Tables 2 and 4, where selecting
11 features is optimal for the frame-level visual experi-
ments but not for the audio-visual and window-level ex-
periments, where larger feature sets, e.g of 24 features,
perform better.

For GMM-based and LSTM frame-level tracking, we
select the number of body language features that leads
to the best performance. We include speech informa-
tion, by adding the 14 speech features in our body lan-
guage feature set (feature-level fusion). We also add
the first and second feature derivatives. For window-
level tracking, we perform statistical functional compu-
tation on the respective optimal frame-level feature set
and then Principal Component Analysis (PCA), keeping
the first 50 components, which explain about 88-95%
of the total variability. To prevent oversmoothing, we
only add first derivatives, resulting in 100 dimensional
feature vectors for both the visual and the audio-visual
case. Both the features and the emotional curves are
z-normalized using the global means and standard devi-
ations of the dataset.

Regarding the simple baseline described in Section
6.3 for frame or window-level tracking, we select the
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(a) Activation.
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(b) Valence.
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(c) Dominance.

Figure 6: Frame-level tracking using body language features: Performance of the various tracking approaches and
feature selection algorithms (in terms of median correlation with ground truth) as a function of the number of body
language features used.

number of body language and speech features that em-
pirically give the best performance, and we combine
them using their mean (which tends to perform better
than median and maximum). Our observation it that the
performance of this simple approach saturates sooner
than the other algorithms, typically around 10 or 15 fea-
tures.

7.1. Frame-level tracking using audio-visual informa-
tion

In Table 2, we present the tracking performance of
visual and audio-visual features methods for the GMM-
based mapping and the LSTM regression approaches.
The number of selected body language features is pre-
sented in parentheses. For the simple baseline method,
the selected number of K body and L speech features
is presented in paretheses as (K+L). For each case, we
present the median of the correlations between each es-
timated curve and the ground truth, as a metric of the
overall performance. In the last row of Table 2, we also
report the median inter-annotator correlations computed
at the frame-level, as described in Section 4.2.

For all methods, activation tracking is the best per-
forming task, followed by dominance, while neither
of the approaches seems to adequately capture valence
trends. Considering speech features increases activation
(speech features generally convey activation informa-
tion [52]) and slightly boosts dominance tracking per-
formance but offers no significant increase for valence.
Both feature selection criteria perform comparably.

For valence, theFvalue resulted in selecting a rela-
tively small body language feature set of 11 features,
therefore we also tried a larger feature set of 24 features
to see if extra features would increase performance at
later stages. Indeed the extra features and their statis-
tical functionals seem to slightly boost performance at

window-level tracking (see results of Section 7.2 Table
4), however valence tracking generally remains prob-
lematic. This suggests that valence is not adequately
reflected on our features, or that body language gener-
ally conveys less information about valence, compared
to activation and dominance. Valence may be better re-
flected through other modalities; for instance facial ex-
pressions are found to discriminate valence states well
[53, 11]. Note that when annotators rated each actor’s
valence they had access to a variety of cues besides
body language and speech, including facial expressions
and lexical content, a fact that could explain their good
agreement scores.

Between the tracking approaches, the GMM-based
mapping achieves consistently higher correlation for
activation and dominance. We performed the non-
parametric Wilcoxon signed-rank test to examine
whether the median of the paired differences between
algorithms is significantly different from zero. Specifi-
cally, we compared the GMM and LSTM approaches,
given same feature selection method, the GMM ap-
proach with the simple baseline, and the LSTM ap-
proach with the simple baseline (p=0.05). Statisti-
cally significant differences are denoted in Table 2 with
symbol ⋆ for the GMM vs LSTM comparison,† for
the GMM vs simple baseline comparison and⋄ for
the LSTM vs simple baseline comparison (symbols are
placed next to the method that performs better in the
comparison). For example, for the frame-level track-
ing of activation using bodylanguage features, sym-
bols⋆ and† next to GMM tracking(Fvalue) indicate that
the algorithm performs significantly better than both
LSTM (Fvalue) and the simple baseline. Overall, the
GMM-based mapping significantly outperforms both
the LSTM method and the simple baseline for most ac-

12



Table 2:Continuous tracking at the frame-level of activation, valence
and dominance using body language and speech cues. We present the
median correlation value between the computed emotional curve and
the ground truth. Parentheses indicate the number of selected body
features (K), or body and speech features (K+L).

body language features: median correlations with ground truth
feature selection activation valence dominance

GMM-based mapping
Fvalue 0.3910 (26)⋆ † 0.1127 (11)/ 0.1005 (24) 0.2102 (15)⋆

mRMRC 0.4121 (25)⋆ † 0.0699 (30) 0.2212 (30)
LSTM regression

Fvalue 0.2905 (14) 0.0934 (28) 0.1712 (13)
mRMRC 0.2994 (20)⋄ 0.0524 (25) 0.1859 (30)

simple baseline
mean 0.2634 (10) 0.0650 (10) 0.1629(15)

body language+speech features: median correlations with ground truth
feature selection activation valence dominance

GMM-based mapping
Fvalue 0.4629⋆ † 0.1178/ 0.1220⋆ † 0.2495⋆ †

mRMRC 0.4692⋆ † 0.0756 0.2582⋆ †

LSTM regression
Fvalue 0.2908 0.0619 0.1610

mRMRC 0.3874⋄ 0.0842 0.1596
simple baseline

mean 0.3000 (10+5) 0.0815(10+5) 0.1829 (5+5)

Median inter-annotator correlation (agreement)
activation valence dominance

0.5945 0.6171 0.6028

tivation and dominance tasks. However, LSTM tracking
hardly outperforms the simple baseline, which works
reasonably well for the activation and dominance tasks.

In order to examine how these methods approximate
the actual values of the underlying emotional curves, we
also compute the Root Mean Square Error (RMSE) be-
tween the estimated curve and the ground truth, which
is defined as:

RMS E(ŷest, ytrue) =

√

√

√

1
T

T
∑

i=1

(ŷest(i) − ytrue(i))2

All methods lead to median RMSE methods between
0.8 and 1.2, with the GMM-based mapping usually hav-
ing a slightly lower RMSE. Those values are consid-
erably higher that the median RMSE values computed
between the annotation curves of multiple evaluators,
which are 0.37, 0.24 and 0.31 for activation, valence
and dominance, respectively.

In Table 3, we also present results based on speech
features only. Audio-only GMM-based tracking works
reasonably for activation and partially for dominance,
which confirms our previous observations regarding the
importance of speech for activation trend tracking. Note
however that these results are computed only on speech
regions, therefore they are not directly comparable with
the results of Table 2.

The behavior of the two methods is illustrated in
Fig. 7. In Figures 7(a)-(c), we present the multiple
annotations (dashed blue lines) along with their mean
(red line) which is our ground truth, for two activa-
tion and one dominance example. Figures 7(d)-(f) show
the estimated curves for GMM-based tracking, LSTM
and the simple baseline respectively, for the curve of
Fig. 7(a). For this example, GMM-based mapping pro-
duces a curve that is smoother and has higher correla-
tion with the ground truth than the other two methods.
Figures 7(g)-(i) show the estimated curves for Fig. 7(b),
where the GMM-based performance is moderate but the
method seems to track the most prominent activation
trends. Finally, Figs. 7(j)-(l) show examples of domi-
nance tracking for curve of Fig. 7(c), where all meth-
ods perform reasonably well, although the three output
curves look quite different. In general, we notice that the
GMM method produces smooth and flat curves, while
the other two methods produce noisier curves of larger
amplitudes.

Table 3:Continuous tracking at the frame-level of activation, valence
and dominance using speech cues only. We present the median cor-
relation value between the computed emotional curve and the ground
truth, computed only on speech regions.

speech features only: median correlations with ground truth
activation valence dominance

GMM-based mapping
0.3866 0.0501 0.1102

LSTM regression
0.2237 0.0609 0.0066

simple baseline (mean)
0.1823 (5) 0.0529 (5) 0.0093 (5)

7.2. Window-level tracking using audio-visual informa-
tion

In Table 4 we present the performance of the low res-
olution tracking at the window level. The median anno-
tation correlations are re-computed at the window level
and are reported at the last row of Table 4. For GMM-
based and LSTM tracking we utilize the empirically se-
lected feature sets of Section 7.1, after statistical feature
extraction and PCA. For the simple baseline, we present
the better performing statistical functionals of K body
and L speech features.

In general, we notice a significant increase from the
previous results which can be attributed to the fact that
we model less noise and track pronounced trends in
the underlying emotional curves. Also we use a richer
feature set, consisting of statistical functionals of the
frame-level features. The GMM-based mapping results
follow similar trends as before; activation is the best per-
forming attribute, followed by dominance. Valence per-
formance is still low, although when we use the Fisher
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(a)Activation Example Annotations (blue) and

their mean (red). Mean evaluator correlation:

0.44
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(b)Activation Example Annotations (blue) and

their mean (red). Mean evaluator correlation:

0.68
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(c)Dominance Example Annotations (blue)

and their mean (red). Mean evaluator

correlation: 0.57
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(d)Tracking of Activation Curve (a) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.74 and 0.77

respectively
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(e)Tracking of Activation Curve (a) using

LSTM regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.60 and 0.52

respectively
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(f)Tracking of Activation Curve (a) using

the simple baseline (mean), with body

(green) and speech+body (black) features.

Correlations with ground truth are 0.26 and

0.30 respectively
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(g)Tracking of Activation Curve (b) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.25 and 0.43

respectively
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(h)Tracking of Activation Curve (b) using

LSTM regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.25 and 0.29

respectively
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(i)Tracking of Activation Curve (b) using

the simple baseline (mean), with body

(green) and speech+body (black) features.

Correlations with ground truth are 0.32 and

0.32 respectively
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(j)Tracking of Dominance Curve (c) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.59 and 0.63

respectively
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(k)Tracking of Dominance Curve (c) using

LSTM regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.51 and 0.50

respectively
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(l)Tracking of Dominance Curve (c) using

the simple baseline (mean), with body

(green) and speech+body (black) features.

Correlations with ground truth are 0.68 and

0.48 respectively

Figure 7:Results of the three tracking methods, GMM-based mapping, LSTM regression and the simple baseline, for
activation, and dominance cases, for frame-level tracking
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criterion Fvalue with the larger feature set our perfor-
mance increases. Adding speech features considerably
increases activation and dominance performance. Acti-
vation tracking reaches a median correlation of around
0.6, which is similar to the median correlations between
human annotators for this task. The LSTM regression
and simple baseline results follow similar trends, al-
though median correlations are generally lower.

The statistical significance of these results is exam-
ined using the Wilcoxon signed-rank test for paired dif-
ferences, following the same notation as in Section 7.1.
In general, GMM-based tracking significantly outper-
forms the other two approaches for activation and dom-
inance trend tracking, while LSTM and simple base-
line have comparable performance, with LSTM being
slightly better.

Again, when looking at the resulting curves we
observe smooth and flat curves for the GMM-based
method and noisier curves with bigger amplitute for the
LSTM and simple baseline methods. Figures 8(a)-(c) il-
lustrate examples of rated activation, valence and dom-
inance respectively. In Figures 8(d)-(f) we present the
window-level tracking of activation curve 8(a), where
all methods perform well, while the GMM-based curve
achieves the highest correlation with the ground truth.
In Figures 8(g)-(i) we present less successful tracking
results of the valence curve in Fig. 8(b). The GMM-
based mapping captures few of the valence peaks, while
the other two methods seem to mostly capture noise.
Finally, in Figs 8(j)-(l) we present tracking of the domi-
nance curve 8(c), where GMM-based tracking performs
better than LSTM, which in turn ourperforms the simple
baseline.

7.3. Discussion of informative body language features

This section discusses the selected body language
features, to provide insights about the body language
gestures, movements and postures that are informative
of the underlying emotional attributes. Details about the
top ranking body language features, according toFvalue

criterion, are presented in Appendix A, Tables A.5, A.6
and A.7. We omit detailed analysis of themRMRC se-
lected features; similar observations can be made for the
activation and dominance tasks.

As seen in Table A.5 for activation, many of the the
selected features describe absolute velocities, relative
body orientation and leaning, posture and hand ges-
tures. Highly activated subjects generally display higher
arm and foot velocities (feats 4,20,21), more leaning
and body orientation towards the interlocutor (feats 1,5),
and more front leaning (feat 9) among others. Also

Table 4: Continuous tracking at the window-level of activation, va-
lence and dominance using body language and speech cues. We
present the median correlation value between the computed emotional
curve and the ground truth

body language features: median correlations with ground truth
feature selection activation valence dominance

GMM-based mapping
Fvalue 0.4943⋆ † 0.1296/ 0.2061 0.3268†

mRMRC 0.5169⋆ † 0.0866 0.3219⋆ †

LSTM regression
Fvalue 0.4455 0.1348 0.2268⋄

mRMRC 0.4529⋄ 0.1480 0.2835⋄

simple baseline
mean 0.3682(10) 0.0626(15) 0.0953(15)

body language+speech features: median correlations with ground truth
feature selection activation valence dominance

GMM-based mapping
Fvalue 0.5979⋆ † 0.1831/ 0.2247 0.3696⋆ †

mRMRC 0.5837⋆ † 0.0563 0.3368⋆ †

LSTM regression
Fvalue 0.4882 0.0976 0.2122

mRMRC 0.4934⋄ 0.0878 0.2549
simple baseline

mean 0.4447(10+5) 0.1261 (15+5) 0.1837(5+5)

Median inter-annotator correlation (agreement)
activation valence dominance

0.6199 0.6317 0.6200

many selected features describe hand gestures, for ex-
ample hands tend to be further from the body (feats
3,6,7,10,19), further from each other (12,22), and raised
higher (24,25) for highly activated subjects. Also, body
location in (x,y) coordinates reflects a tendency of ac-
tivated participants to be at the center of the recording
space (feats 11,13).

For the dominance task, according to Table A.6,
many of the selected features are common with the acti-
vation features, however we notice a preference for fea-
tures describing relative behaviors like velocity, leaning
and orientation. For example dominant individuals tend
to lean and have body orientation more towards inter-
locutor (feats 1,4), and move their body, arms and feet
more towards interlocutor (feats 8,17,20,22,24). This
seems intuitive since dominance essentially captures
relative (interaction) behavior. Also, dominant subjects
tend to touch the interlocutor (feat 10), which brings to
mind psychological observations relating touching with
dominant behavior [54].

Finally, for the valence task, some features from Ta-
ble A.7 stand out. For instance, positively valenced
subjects tend to place hands on chest (feats 22,23), or
touch the interlocutor’s hand (feat 15), which seem to
be intuitive bodily expressions of valence. Also posi-
tively valenced subjects tend to look more towards and
move towards the interlocutor (feats 9,21), and move
their arms and feet more (feats 2,13,14). Also the com-
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(a)Activation Example Annotations (blue) and

their mean (red). Mean evaluator correlation:

0.54
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(b)Valence Example Annotations (blue) and

their mean (red). Mean evaluator correlation:

0.46
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(c)Dominance Example Annotations (blue)

and their mean (red). Mean evaluator

correlation: 0.51
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(d)Tracking of Activation Curve (a) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.57 and 0.74

respectively
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(e)Tracking of Activation Curve (a) using

LSTM regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.49 and 0.58

respectively
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(f)Tracking of Activation Curve (a) using

the simple baseline (mean), with body

(green) and speech+body (black) features.

Correlations with ground truth are 0.11 and

0.41 respectively
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(g)Tracking of Valence Curve (b) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.24 and 0.21

respectively
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(h)Tracking of Valence Curve (b) using LSTM

regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.31 and 0.17

respectively
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(i)Tracking of Valence Curve (b) using the

simple baseline (mean), with body (green)

and speech+body (black) features.

Correlations with ground truth are 0.02 and

0.03 respectively
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(j)Tracking of Dominance Curve (c) using

GMM-based mapping, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.66 and 0.71

respectively
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(k)Tracking of Dominance Curve (c) using

LSTM regression, with body (green) and

speech+body (black) features. Correlations

with ground truth are 0.29 and 0.46

respectively
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(l)Tracking of Dominance Curve (c) using

the simple baseline (mean), with body

(green) and speech+body (black) features.

Correlations with ground truth are 0.11 and

0.12 respectively

Figure 8:Results of the three tracking methods, GMM-based mapping, LSTM regression and the simple baseline, for
activation, valence and dominance cases, for window-leveltracking
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bination of more leaning towards others (feat 20), but
less front leaning (feat 19) for positive valence, indi-
cates that positively valenced subjects tend to lean more
towards the interlocutor, while negatively valenced sub-
jects generally have a more slouched posture.

Some of the above affective body language behav-
iors agree with the literature, for example arms being
far from the body for high activation, or increased body
motion for activated emotions such as anger ([31], Ta-
ble 2). However, direct comparisons are hard to make
since most past works on body language examine pre-
defined categorical emotional states rather than continu-
ous emotional attributes. Other aspects that differentiate
this work from the literature include examining domi-
nant behaviors, which are generally less discussed, as
well as the focus on interaction aspects of body lan-
guage through the introduction of ‘relative’ body fea-
tures.

8. Conclusion and Future Work

We address the problem of tracking continuous emo-
tional attributes of participants throughout affective
dyadic improvisations, where participants may be lis-
tening, speaking or doing neither. To this end, we have
examined interpetable features describing of a person’s
body language, and speech information. These descrip-
tions complement existing literature, e.g., [22, 25, 28,
29], in capturing a wide range of full body gestures and
emphasizing the interactive aspects of body language in
dyadic emotional interactions. We propose a statisti-
cal mapping approach to automatically track emotional
trends based on body language and speech. Our ap-
proach outperforms other examined methods, such as
LSTM regression [13], and produces smooth emotional
curve estimates. Also, the simple baseline represents an
interesting, unsupervised alternative, that is worth fur-
ther investigation. Our results show promising perfor-
mance for tracking trends of activation and dominance,
and also suggest that body language conveys rich acti-
vation and dominance related information. For activa-
tion trend tracking our correlation-based performance
is comparable to human performance. Finally, analy-
sis of our body language features offers quantitative in-
sights on the relations between an underlying emotional
state and the displayed bodily behavior in the context
of dyadic interaction. This enables us to draw connec-
tions with psychological observations regarding body
language and emotion.

However, valence trend tracking remains problem-
atic, which might indicate that our features are not ad-
equately reflective of valence. Existing literature in-

dicates that body posture is a better indicator of acti-
vation, although the importance of the valence dimen-
sion should not be dismissed [25]. Possibly higher-level
body features are required to discern valence; we have
not incorporated audio-visual cues at the session level,
such as the amount and length of pauses, percentage of
time that an actor performs an action, turn-taking pat-
terns etc. Such higher-level cues may be informative
of valence and dominance, and their investigation is a
promising future research direction. Also note that we
do not consider facial expressions, which are known to
be reflective of valence [53, 11].

Other open questions pertain to our performance met-
rics; while correlation metrics and RMS errors describe
different aspects of tracking performance and are cur-
rently used for evaluating systems that produce contin-
uous estimates [13, 12], we may need to find more accu-
rate measures to describe the performance of such sys-
tems. Additionally, normalizing for subject-dependent
emotional variability in expressive body language is
an interesting research direction that could potentially
bring significant improvement. A further goal is to ex-
tend this work towards examining the produced emo-
tional curves to detect regions of emotional saliency,
and study the actual events that occur in such regions.
Such vocal, bodily or interaction-based events could
give us insights of what consitutes the emotional con-
tent of an interaction.

Appendix A. Top Ranked Body Language Features
for Emotion Discrimination

In Tables A.5, A.6 and A.7 we present the top ranked
25 body language features for activation, valence and
dominance, according to theFvalue criterion. Detailed
results of themRMRC criterion are ommited for lack
of space, however we include themRMRC-based rank
next to each feature (notice the overlap between the fea-
tures of the two criteria for activation and dominance,
although not for valence). Each feature value represents
a meaningful body posture. For performing statistical
tests, we quantize each attribute value into 3 classes us-
ing the k-means algorithm, and collect the feature in-
stances that correspond to the high and low classes, over
the total database. For each feature, we perform a t-
test to compare the mean feature value between low and
high emotional attribute classes. We also include a de-
scription of the corresponding difference in body lan-
guage that each feature value represents, always com-
paring high (or positive) versus low (or negative) at-
tribute values. For example, the first line (feature of rank
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1) of Table A.5 can be interpreted as ‘more leaning to-
wards the interlocutor when subject is characterized by
high activation vs no leaning when subject is character-
ized by low activation’. All feature mean differences are
statistically significant, although in some cases mean
differences are so small that do not correspond to a rec-
ognizable difference in body language (e.g., see feat. 8
at A.5, or feat. 3 at A.7).
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Table A.5: Statistical analysis of the top 25 activation features, according to the Fvalue criterion (each feature’s rank according to the mRMRC

criterion is included in the second column). The feature descriptions under the statistical tests column are describing high activation behavior
compared to low activation behavior of a subject A. The statistical test performed is difference of means of the feature values between high and low
activation classes (t-test)

Activation: Comparison of high vs low activation classes
Fvalue (and mRMRC)

rank rank feature description of statistical tests results p ≈ 0
Fvalue mRMRC

1 1 A’s body lean towards/away from B more lean towards vs no leaning
2 9 norm x coord of A’s right hand in A’s system x coord higher (further from body towards right, see also Fig. 5(a))
3 7 distance of A’s left hand from A’s hip greater distance
4 6 abs velocity of A’s right arm higher velocity
5 22 relative angle of A’s body towards B body orientation more towards B vs sideways
6 27 norm y coord of A’s left hand in A’s system y coord higher (further from body towards front, see also Fig. 5(a))
7 12 distance of A’s right hand from A’s hip greater distance
8 2 A’s body leaning angle, left/right slightly lean right vs straight (though angle in both cases is close to zero)
9 4 A’s body leaning angle, front/back more lean front vs no leaning
10 28 norm y coord of A’s right hand in A’s system y coord higher (further from body towards front, see also Fig. 5(a))
11 3 x coord of A’s center x abs value lower (x more towards center (0,0,0) of the recording space)
12 34 distance between A’s right and left hand hands wider apart
13 11 y coord of A’s center y abs value lower (y more towards center (0,0,0) of the recording space)
14 14 norm z coord of A’s upper back higher, more upwards posture, also indicates less sitting
15 48 distance between A’s right hand and B’s back smaller, more touching, could indicate hugging depending on the interlocutors

orientation
16 23 norm z coord of A’s left knee lower, may indicate kneeling
17 8 A’s head angle, up/down more straight vs more downwards
18 38 angle of A’s right hand with x coord in A’s system hand more in front vs slightly towards left (see also Fig. 5(e))
19 37 norm x coord of A’s left hand in A’s system x coord lower (further from body towards left, see also Fig. 5(a))
20 18 abs velocity of A’s right foot velocity higher
21 17 abs velocity of A’s left foot velocity higher
22 20 angle between A’s hands hands wider apart
23 40 distance between A’s left hand and A’s chest bigger distance, hand further from chest
24 41 norm z coord of A’s right hand in A’s system hand is higher, indicates raised hand (see also Fig. 5(a))
25 42 norm z coord of A’s left hand in A’s system hand is higher, indicates raised hand (see also Fig. 5(a))

Table A.6: Statistical analysis of the top 25 dominance features, according to the Fvalue criterion (each feature’s rank according to the mRMRC

criterion is included in the second column). The feature descriptions under the statistical tests column are describing high dominance behavior
compared to low dominance behavior of a subject A. The statistical test performed is difference of means of the feature values between high and
low dominance classes (t-test)

Dominance: Comparison of high vs low dominance classes
Fvalue (and mRMRC)

rank rank feature description of statistical tests results p ≈ 0
Fvalue mRMRC

1 7 relative angle of A’s body towards/away from B body orientation more towards other vs sideways
2 1 A’s head angle, up/down more straight vs more downwards
3 6 norm z coord of A’s center higher, indicates less sitting
4 3 A’s body leaning angle towards/away from B more lean towards vs no leaning
5 13 distance of A’s left hand from A’s hip greater distance, handfurther away from hip
6 2 z coord of A’s right foot lower
7 17 norm x coord of A’s right hand in A’s system x coord higher (further from body towards right, see also Fig. 5(a))
8 12 relative velocity of A towards/away from B move more towards vs away
9 24 distance of A’s right hand from A’s hip greater distance, further from hip
10 48 min dist between A’s left hand and B’s torso smaller, indicates more touching
11 38 norm z coord of A’s right hand in A’s system hand is lower
12 29 distance between A’s hands hands wider apart
13 10 A’s body leaning angle, left/right more lean right (though angle in both cases is close to zero)
14 28 norm x coord of A’s left hand in A’s system x coord lower (further from body towards left, see also Fig. 5(a))
15 5 y coord of A’s center y abs value lower (y more towards center (0,0,0) of the recording space)
16 36 angle of A’s right hand with x coord in A’s system hand more in front vs slightly towards left (see also Fig. 5(e))
17 14 relative velocity of A’s right hand towards/away from B move more towards vs away
18 45 norm z coord of A’s left hand in A’s system hand is lower
19 5 A’s body leaning angle, front/back more lean front vs slighly less lean front
20 21 relative velocity of A’s left hand towards/away from B move more towards vs away
21 37 distance between A’s right hand and A’s chest greater, hand further from chest
22 15 relative velocity of A’s right foot towards/away from B move more towards vs away
23 11 norm z coord of A’s upper back higher, more upwards position,also indicates less sitting
24 16 relative velocity of A’s left foot towards/away from B move more towards vs away
25 9 x coord of A’s center x abs value higher (x further from center (0,0,0) of the recording space)
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Table A.7: Statistical analysis of the top 25 valence features, according to the Fvalue criterion (each feature’s rank according to the mRMRC

criterion is included in the second column). The feature descriptions under the statistical tests column are describing positive valence behavior
compared to negative valence behavior of a subject A. The statistical test performed is difference of means of the feature values between positive
and negative valence classes (t-test)

Valence: Comparison of positive vs negative valence classes
Fvalue (and mRMRC)

rank rank feature description of stat. tests results p ≈ 0
Fvalue mRMRC

1 33 norm z coord of A’s lower back higher, indicates less sitting
2 42 abs velocity of A’s right arm higher velocity
3 15 A’s head angle, up/down slightly more downwards vs straight (though the two angles are almost the same)
4 34 distance between A’s hands hands closer together
5 41 distance of A’s left hand from A’s hip greater distance, further from hip
6 36 distance of A’s right hand from A’s hip greater distance, further from hip
7 28 norm x coord of A’s left hand in A’s system x coord higher (closer to body towards right, see also Fig. 5(a))
8 20 norm z coord of A’s upper back lower, less upward position
9 11 relative angle of A’s face towards B face orientation more towards other
10 31 norm x coord of A’s right hand in A’s system x coord lower (closer to body towards left, see also Fig. 5(a))
11 30 angle of A’s left hand with x coord in A’s system left hand moretowards front rather than left (see also Fig. 5(e))
12 27 norm y coord of A’s right hand in A’s system y coord higher (further from body towards front)
13 21 abs velocity of A’s right foot higher velocity
14 23 abs velocity of A’s left foot higher velocity
15 43 distance between A’s right hand and B’s hand lower, indicates more touching of B’s hand
16 3 norm z coord of A’s left knee higher, indicates less kneeling
17 4 A’s direction relative to B slightly more towards right-front of B vs more in front
18 29 norm y coord of A’s left hand in A’s system y coord higher (further from body towards front)
19 19 A’s body leaning angle, front/back less leaning front vs more leaning front, indicates less slouched posture
20 24 A’s body leaning angle, towards/away from B more leaning towards vs less leaning towards
21 12 relative velocity of A towards/away from B more moving towards vs moving away
22 37 distance between A’s right hand and A’s chest lower, indicates hand touching chest
23 38 distance between A’s left hand and A’s chest lower, indicates hand touching chest
24 30 angle of A’s left hand with x coord in A’s system hand more towards front vs towards right
25 1 y coord of A’s center y abs value bigger (y further from center (0,0,0) of the recording space)
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