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Abstract

A method of rapid semi-automatic segmentation of real-time
magnetic resonance image data for parametric analysis of vo-
cal tract shaping is described. Tissue boundaries are identified
by seeking pixel intensity thresholds along tract-normal grid-
lines. Airway contours are constrained with respect to a tract
centerline defined as an optimal path over the graph of all in-
tensity minima between the glottis and lips. The method allows
for superimposition of reference boundaries to guide automatic
segmentation of anatomical features which are poorly imaged
using magnetic resonance — dentition and the hard palate — re-
sulting in more accurate sagittal sections than those produced by
fully automatic segmentation. We demonstrate the utility of the
technique in the dynamic analysis of tongue shaping in Tamil
liquid consonants.

Index Terms: speech production, vocal tract segmentation,
MRI, tongue shaping, articulatory analysis

1. Introduction

Real time magnetic resonance imaging (rtMRI) promises to be
a viable tool for studying human speech production [1]. An im-
portant process in the analysis of MRI speech data is segmenta-
tion of the vocal tract. Tissue boundaries can be delineated man-
ually with great accuracy (e.g. [2], [3], [4]), but such approaches
are labor intensive, subject to inter-frame inconsistencies, and
unsuitable for real-time video sequences, which can consist of
hundreds of image frames. A robust technique has been devel-
oped to automatically segment the upper airway into anatomical
regions of linguistic interest [5]; however, this method is com-
putationally intensive and requires considerable supervision to
initialize.

Two major problems common to all of these approaches
are (i) locating the dentition, which does not image in the MR
sequences typically used for upper airway analysis, and (ii) cor-
recting tissue segmentation compromised by motion blur, low
signal-to-noise ratios, or inherent scarcity of soft tissue. Addi-
tionally, further methods of data reduction or transformation are
required when tract boundaries identified by an unconstrained
segmentation procedure are to be quantified and compared.

1.1. Rationale

The goal of the current study is to develop a method of rapidly
segmenting the airway in midsagittal MR images, with a mini-
mum of supervision, in a manner which would be directly appli-
cable to the parametric analysis of vocal tract shaping during the
production of intervocalic consonants. Because the preferred
method of analysis requires the superimposition of an analysis
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grid on the vocal tract [6], we make use of this grid from the out-
set to constrain the tissue identification algorithm. Additionally,
we wish to provide a method by which the speech researcher
may guide the algorithm with datasets which are problematic
for fully automatic approaches, by selectively specifying refer-
ence boundaries to improve airway segmentation.

2. Method
2.1. Image Acquisition

All data analyzed in this study were acquired using an rMRI
protocol developed specifically for the dynamic study of speech
production [1]. Subjects’ upper airways were imaged in the
midsagittal plane with video reconstruction rates varying be-
tween 22.4 and 32 f.p.s., then reintegrated with audio simulta-
neously recorded at 20 kHz [7], to allow for dynamic audio-
visualization of subjects’ speech production.

2.2. Analysis Grid Construction

Building on the method developed by Ohman [6] and Maeda
[8], a composite analysis grid was superimposed on each image
frame to be segmented. Anatomical landmarks were chosen at
(i) the glottis, (ii) the highest point on the palate, (iii) the alveo-
lar ridge, and (iv) the lips. A lingual origin was located equidis-
tant from the palate and the rear wall of the pharynx, close to
the centre of mass of the tongue in resting position. Horizon-
tal pharyngeal gridlines were superimposed at regular intervals
from the glottis to the level of the lingual origin.

A semi-polar grid was constructed over the mid-oral vocal
tract, extending from the mid pharynx through to the alveolar
ridge, by projecting equi-spaced radial gridlines from the lin-
gual origin. A second origin was located above the incisors,
from which radial gridlines were projected through the anterior
oral and sublingual cavities. To complete the grid, vertical lines
were superimposed over the region of the vocal tract anterior to
the teeth, extending beyond the lips (Fig. 1).

2.3. Segmentation

For each frame of interest, tissue boundaries were located by
traversing the superimposed analysis grid and characterizing the
change in pixel intensity along the paths defined by each grid-
line. A typical intensity profile calculated along a tract-normal
gridline will feature several local minima, one of which will be
located at the bottom of an ‘intensity well’ corresponding to the
tract airway (Fig. 2). In a midsagittal MR image acquired with
adequate SNR, tissue boundaries will typically be located sym-
metrically around this centerpoint, in the vicinity of the interval
of steepest change in pixel intensity.
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Figure 1: Composite semi-polar analysis grid superimposed on
a midsagittal MR image of a male vocal tract.
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Figure 2: Intensity profile of a tract-normal gridline, show-
ing four local minima and a central ‘well’ corresponding to the
darker pixels associated with the vocal tract airway. A hori-
zontal line intersects the profile at the pixel intensity thresholds
corresponding to tissue boundaries in this region of the tract.

2.3.1. Graph Construction

The pixel coordinates and intensity values of all local minima
identified on the intensity profile of each gridline were calcu-
lated for each frame. A graph was constructed in which each
intensity minimum, the glottis, and the mid-labial point, was
represented by a node. Each node on gridline g; was connected
to each node on the immediately adjacent gridlines g;—1 and
gi+1. Nodes on the first gridline were also connected to the
glottal node; nodes on the final gridline to the mid-labial node.

For a typical male vocal tract, imaged with adequate SNR,
the set of all pixel intensity minima in the vicinity of the tract
airway can be represented as graph of approximately 150 nodes
and 500 edges distributed over 30 equi-spaced gridlines (Fig. 3).

2.3.2. Centerline Determination

Having identified all intensity minima in the vicinity of the air-
way, the vocal tract centerline was estimated for each frame by
finding an optimal path through the graph from the glottis to the
lips. The weight w;; of the edge connecting node n; to n; was
calculated as the weighted sum of the destination node intensity
1I; and the euclidean distance d;; between the coordinates of the
corresponding pixels (Eq. 1):
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Figure 3: Construction of a graph connecting pixel intensity
minima on adjacent gridlines. Terminal nodes on the graph are
defined at glottal and mid-labial points on each image frame.

wi; = ol + (1 — a).dij N
where « is a weighting factor used to preferentially select
shorter paths (o — 0) or paths defined over darker pixel nodes
(o — 1). From the graph connecting all grid-constrained inten-
sity minima, an optimal path corresponding to the tract center-
line was calculated using Dijkstra’s algorithm [9].

2.3.3. Tissue Boundary Estimation

Tissue boundaries were estimated by locating the steepest
points on the intensity function within a specified threshold of
the intensity range for a given gridline. For the intensity func-
tion I(p) defined over the set of pixels p «+ [1..n] centered
at pixel p = c¢ with intensity /., the initial estimate for tissue
boundary intensity I+ was calculated using Eq. 2:

I = I + B.(min( max (I(p), max (I(p))) - L) @)

p+[1..c] p[c..n]

where [ is a thresholding factor chosen according to the con-
trast and SNR of a given image sequence. The difference func-
tion I'(p) was then used to locate the steepest region in each
half of the intensity function within a specified range v of ;.
For each gridline, with total intensity range AI(p), the inner
and outer tissue boundary intensities Ip; and Ip, were located
using using Egs. 3 and 4.

3)

Ii I'(p), p« [1..q]

= max
[I(p)—Itn|<v.AI(p)

o = min
1(p)—In|<v.AI(p)

I'(p), p+ [c.n] 4)

2.3.4. Labial Segmentation

Labial tissue boundaries were segmented automatically by ex-
tending the analysis grid beyond the point of maximum lip pro-
trusion and backtracking until the intensity of any local maxima
exceeded a specified threshold, defined as a ratio of the differ-
ence between mean pixel intensities of gridlines superimposed
entirely on regions of background noise and those straddling
some amount of soft tissue. Upper and lower lip thresholds
were calculated independently in order to capture any asymme-
tries in labial protrusion.



2.3.5. Palatal and Dental Correction

Because of the scarcity of soft tissue in the region of the hard
palate, MR imaging often fails to resolve the upper mid-oral
cavity boundary with sufficient contrast, if at all. As a re-
sult, the segmentation algorithm typically fails to locate the true
palate when deployed with parameters which best identify tis-
sue boundaries in other regions of the tract. Likewise, dentition
cannot be imaged with the pulse sequences used in these stud-
ies, yet it is important to be able to approximate the location of
subjects’ teeth when segmenting the midsagittal airway.

For each image sequence, the palatal contour was automat-
ically identified in the frame which best resolved the tissue in
this region, and manually adjusted where necessary. Upper den-
tal boundaries were estimated from frames in which the teeth
were surrounded by soft tissue. Dental and palatal reference
boundaries were then superimposed on each other image frame
to guide the automatic segmentation algorithm.

A DFT-based algorithm [10] was used to determine whether
the subject’s head had moved from the postures assumed in
the palatal or dental reference frames, allowing for correction
during the registration process. Vocal tract contours segmented
with and without palatal correction are illustrated in Fig. 4.

Figure 4: Correction of palatal contours. Male Tamil speaker.
(i) Tissue boundaries derived by unsupervised segmentation;
(ii) modified boundaries incorporating reference palate.

2.3.6. Tongue Smoothing

Because of the abrupt changes in curvature characteristic of
midsagittal vocal tract contours — introduced by anatomical dis-
continuities around the epiglottis, velum and dentition — it dif-
ficult to deploy a global smoothing algorithm capable of reduc-
ing noise without also compromising the accuracy of the seg-
mentation of these regions. Vocal tract contours corresponding
to the tongue edge, on the other hand, are well suited to re-
finement through filtering and guided reconstruction because of
their anatomical homogeneity.

We make use of the discrete cosine transformation (DCT)
to reduce noise in the lingual tissue boundary segmented us-
ing Eq. 3. From the subset of gridlines covering the tongue,
we extract a 1-dimensional lingual contour — expressed as set
of radial distances from the innermost gridline endpoint — and
low-pass filter the curve by eliminating all DCT components
whose magnitude does not exceed a specified threshold, before
reconstructing the tongue contour from the inverse DCT.
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3. Results
3.1. Parameter Selection

For the MRI data analyzed so far, best segmentation results
were achieved with gridline spacings in the range 5 < dGL <
8 mm and radial gridline spacings in the range 4°< df <
8°. The centerline estimation algorithm (Eq. 1) performed best
when a centerline weighting factor was specified in the range
0.1 < a < 0.25 (preferring shortest total path over relative pixel
darkness of local minima). Tissue boundary detection (Eqgs. 2—
4) was most effective when using an intensity-thresholding fac-
tor in the range 0.45 < 8 < 0.7, and an inflection-search con-
straint factor in the range 0 < v < 0.1.

For the majority of sequences, in which anterior pharyngeal
displacement was negligible, more robust automatic segmen-
tation of the rear pharyngeal wall was achieved by averaging
the tissue boundaries located across all image frames in the se-
quence and using the mean pharyngeal contour as a reference
boundary. Tongue smoothing was found to be most effective
using DCT components responsible for 75% of the lingual cur-
vature, or 85% of curvature when analyzing data which contains
a significant number of retroflexed consonants.

3.2. Quantifying Segmentation Accuracy

To examine the accuracy of the automatic segmentation algo-
rithm on a broad range of MR Image data, 50 image frames
taken from video sequences of five different speakers were an-
alyzed. 10 frames each from three male and two female speak-
ers were randomly selected from a multilingual rtMRI speech
database. The image set encompassed a variety of articula-
tory postures, including mid-vocalic, mid-consonantal, transi-
tion and rest frames.

The midsagittal airway in each test frame was first seg-
mented manually by a phonetician experienced in analyzing
MR image data; tissue boundaries were then identified auto-
matically in the same image using an 8mm-spaced grid and
segmentation parameters « = 0.15, = 0.55, v = 0.05. The dif-
ference between the sagittal distance functions extracted from
these two boundaries was calculated for each image, and aver-
aged for each speaker (Fig. 5). Mean segmentation errors (root
mean square differential displacement in mm per gridline) were
calculated for all speakers (Table 1).
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Figure 5: Mean midsagittal distance functions calculated from
(i) manual, and (ii) automatic segmentation of airways. (iii)
Mean segmentation error (mm/gridline): 10 image frames ran-
domly extracted from a 9 sec. utterance by Subject M1 (Tamil).

The data in Table 1 show that most segmentation errors oc-
cur in the anterior region of the vocal tract, where rapid anatom-
ical transitions occur around the lips and teeth. The success



of the algorithm in this region depends largely on the accuracy
with which the reference dental boundaries can be registered
with each frame and reconciled with the local oral intensity
thresholds. Automatic segmentation is more consistently suc-
cessful when identifying the more homogenous tissue bound-
aries in the mid-oral and pharyngeal regions. Automatic seg-
mentation accuracy was poorest when tissue boundaries devi-
ated from normal alignment with respect to the analysis grid-
lines, as was observed in the articulation of heavily retroflexed
obstruents, and certain types of velic configurations.

Speaker Pharynx  Mid-oral Dental  Total
M1 (Tamil) 0.774 0.950 1.314  1.043
M2 (English) 0.754 0.329 1.770  0.947
M3 (German) 0.536 0.816 1.559 0.877
W1 (Serbian) 0.778 0.629 1.026  0.767
W2 (Mandarin) 1.284 0.792 2398 1.310
Mean error 0.825 0.703 1.613  0.988

Table 1: Mean segmentation errors (mm/gline) in 50 frames.
(dgr = 8mm;,a=0.15, 3=0.55,v=0.05, thpcr = 0.85)

4. Applications

Because it affords rapid, accurate, unsupervised identification
of tissue boundaries across long sequences of video frames, the
method described here is beginning to provide important in-
sights into the dynamics of articulation. An ideal application
for this technique is the analysis of tongue shaping in classes of
consonants which are hypothesized to involve complex coordi-
nation of lingual gestures: liquids and fricatives. A segmented
midsagittal MR image frame acquired from a male speaker in a
study of Tamil liquid consonants is illustrated in Fig. 6.

Figure 6: Auto-segmented Tamil retroflex rhotic [(]. (dar =
6mm, o = 0.15, 8 = 0.55, v = 0.05, thpcr = 0.85.

5. Discussion

When deployed with MR image data acquired with adequate
signal-to-noise ratios, the current algorithm has proven to be
an effective tool for the rapid automatic segmentation of a wide
variety of vocal tracts with sufficient accuracy to allow for direct
sagittal distance function analysis. There is a need, however, for
refinement of the method to improve its ability to automatically
segment vocal tracts in noisier data — a characteristic of MR
images acquired or reconstructed at higher framerates.
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Two ways in which the the algorithm might be rendered
more robust are to incorporate information about the timecourse
of articulatory displacement in the search for tissue thresholds,
and to further constrain the analysis grid using some method
of anatomically-informed principal components analysis — an
approach which has been explored in previous work ([1], [3]).

5.1. Future Directions

While all of the examples shown in this paper involve segmen-
tation of the midsagittal airway, the same approach to tissue
boundary identification — using automatic thresholding of inten-
sity profiles over an anatomically-guided graph — can be used to
process MR data acquired from other imaging planes.

Automatic segmentation of sets of parasagittal slices is be-
ing used to construct three-dimensional models of the vocal
tract, which are invaluable for studying tongue shaping in lig-
uid consonants. A modified verion of the algorithm has been
deployed to extract tissue boundaries from axial images of the
pharynx: a technique which can be used to quantify differences
in the articulation of voiced and voiceless consonant pairs.

6. Conclusion

The method described here addresses a need for linguists work-
ing with real-time MRI data, by providing a tool for rapidly and
accurately segmenting vocal tract image frames, with a mini-
mum of supervision, in a manner which is consistent with the
requirements of parametric vocal tract analysis.
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