
Direct Estimation of Articulatory Kinematics from Real-time Magnetic
Resonance Image Sequences

Michael Proctor1,2, Adam Lammert3, Athanasios Katsamanis1,
Louis Goldstein2, Christina Hagedorn2, Shrikanth Narayanan1,2

1Viterbi School of Engineering, University of Southern California, USA
2Department of Linguistics, University of Southern California, USA

3Department of Computer Science, University of Southern California, USA
mproctor@usc.edu

Abstract
A method of rapid, automatic extraction of consonantal artic-
ulatory trajectories from real-time magnetic resonance image
sequences is described. Constriction location targets are esti-
mated by identifying regions of maximally-dynamic correlated
pixel activity along the palate, the alveolar ridge, and at the lips.
Tissue movement into and out of the constriction location is es-
timated by calculating the change in mean pixel intensity in a
circle located at the center of the region of interest. Closure and
release gesture timings are estimated from landmarks in the ve-
locity profile derived from the smoothed intensity function. We
demonstrate the utility of the technique in the analysis of Italian
intervocalic consonant production.
Index Terms: speech production, real-time MRI, consonant ar-
ticulation, tongue shaping, articulatory phonology

1. Introduction
Real time magnetic resonance imaging (rtMRI) is an important
emerging method for studying human speech production [1, 2].
However, analysis of speech data acquired using rtMRI presents
several challenges. Unlike articulometry, the sensing modality
is not designed to track the location of flesh points across time;
as a result, analysis of midsagittal imaging data has typically
relied on segmentation of tissue boundaries in the upper airway
(e.g. [3, 4, 5]) – a time consuming approach which demands
expert anatomical knowledge, and is prone to inconsistencies
and experimenter biases.

Although automatic segmentation techniques have been de-
veloped for the analysis of real-time MRI [6, 7], additional pro-
cessing is still required in order to identify articulatory events
in the resulting sequences of tissue boundaries. No method
currently exists for characterizing gestural dynamics from such
data in a manner which would allow comparison with articu-
latory data obtained from other sensing modalities, including
X-ray microbeam [8] and EMA [9, 10, 11, 12].

The goal of this study is to develop a robust method of
identifying and automatically locating constriction events – typ-
ically corresponding to intervocalic consonant productions – in
sequences of midsagittal MR images, with minimal supervision.
Additionally, we propose a method of dynamically characteriz-
ing constriction formation and release which allows for quan-
tification of hypothesized underlying gestural events, consistent
with a task dynamic analysis of speech production [13]. The va-
lidity of this approach is assessed by comparing the derived con-
striction kinematics with lingual and labial trajectories tracked
over the same image sequences.

2. Method
2.1. Image Acquisition

All data analyzed in this study were acquired using a rtMRI
protocol developed specifically for the dynamic study of speech
production [2]. Subjects’ upper airways were imaged in the
midsagittal plane with spatial resolution 68 x 68 pixels, field of
view 200 x 200 mm, and a temporal reconstruction rate of 33.18
f.p.s. Subjects’ heads were fixed throughout the scan, to allow
for inter-frame comparison of image data. Pixel intensity was
quantized into 8-bit values. Video sequences were reintegrated
with de-noised audio simultaneously recorded inside the MRI
scanner at 20 kHz [14]. The resulting video allows for dynamic
visualization of midsagittal articulation, and acoustic analysis
of the companion speech signal.

2.2. Automatic Constriction Location

We have developed a method for automatically identifying con-
striction location targets, by combining pixel-wise temporal dy-
namics with anatomical prior knowledge. For each speaker, the
midsagittal trace of the passive articulators – extending from
the velum to the upper lips – was defined (Fig. 1, solid line).
A set of pixels below this line was automatically identified as
a reasonable search space for each potential constriction region
(e.g., Fig. 1: broken line defines dorsal search space). For each
speech interval of interest, a cohort of maximally-active neigh-
boring pixels was located within the specified search space, over
the corresponding sequence of image frames.
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Figure 1: Automatic location of dorsal constriction target: in-
tervocalic stop [ak:o] produced by adult male Italian speaker.
Cross indicates center of maximum change in locally-correlated
pixel intensity over surrounding 20-frame sequence.

At each point p with coordinates (x, y) and intensity Ip in the
search space P , the mean intensity Īp(f) of all pixels lying
within a circle centered at p with radius r was calculated for
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each frame f (Eq. 1). The dynamic range of local intensity
DRp was calculated over the frame sequence f ∈ [a..b] (Eq. 2).
Pearson correlation coefficients ρ(Īp(f), Īq(f)) were computed
between unit-radius intensity functions centered at p and each
nearest neighbor q, and the degree of locally-correlated activity
CoIp was calculated as the mean correlation of changes in in-
tensity at all pixels lying in a 2d× 2d grid centered at p (Eq. 3).

The locus of articulatory activity for frame sequence [a..b]
was chosen to be the pixel c at which the weighted sum ofDRp

and CoIp was maximized over the search space P (Eq. 4),
where α is a weighting factor used to preferentially select
greater fluctuations in intensity (α → 1) or more highly cor-
related activity in a region (α→ 0).

Īp(f) = mean(Iq), ∀q : ||p− q|| < r (1)
DRp = max

f∈[a..b]
(Ip(f))− min

f∈[a..b]
(Ip(f )) (2)

CoIp = mean(ρ(Īp, Īq)), ∀q : ||p− q|| < d (3)
Īc = max

p∈P
(α ·DRp + (1− α) · CoIp) (4)

Îjp = b · T̂ j
p (5)

2.3. Estimating Constriction Kinematics

Having located the region of greatest change in regional inten-
sity for a sequence of images, the constriction degree in each
frame can be estimated from the mean intensity of pixels in that
region, since pixel intensities acquired from rtMRI reflect the
density of soft tissue in a region of space. Local pixel inten-
sity averaging (Eq. 1) therefore provides a good estimate of the
kinematics of tongue movement into and out of alveolar, palatal,
and dorsal regions (Fig. 2), or lip closure and opening, when the
center pixel is chosen in labial regions.
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Figure 2: Change in intensity at constriction target: intervo-
calic Italian stop [ak:o]. Broken line: mean intensity of all
pixels lying within circle (r = 3px) centered at point of maxi-
mum dorsal articulatory activity (39,20); Solid line: intensity
function smoothed using locally-weighted linear regression.

Because the effective sampling rate of rtMRI data is relatively
low (< 40 frames/sec.), the resulting time series data can dis-
play discontinuities when derived from image sequences with
low SNR. However, because the underlying articulator motion
being estimated is characteristically smooth and intrinsically
low frequency [15, 16], the intensity functions calculated us-
ing Equation 1 can be conditioned using a variety of techniques
to remove noisy transients.

To reduce noise, and to facilitate estimation of constriction
formation velocity, we fit an oversampled regression line Îp at
samples T̂p, to the observed time series, Īp sampled at points
Tp (Eq. 5), using locally-weighted linear regression [17]. As a
weighting function, we use a gaussian kernel K having a stan-
dard deviation of h samples. The solid line in Fig. 2 illustrates

the effect of smoothing the estimates of tongue body motion
(broken line) into and out of a velar constriction during the pro-
duction of an intervocalic Italian dorsal geminate stop. In this
example, the kernel width parameter was h = 0.8 samples. Be-
cause samples lying more than 3h from the center of the gaus-
sian kernel will receive weights near zero, this corresponds to
a smoothing window width of approximately 90 msec for these
data, which were sampled at 33.18 frames/second (sampling pe-
riod = 30.1 msec).

2.4. Estimating Articulatory Activity

Because articulatory events appear to be more clearly identi-
fiable from tissue velocity data (e.g., [10, 11, 12]), velocity
metrics were derived from the estimates of constriction de-
gree. First differences calculated directly from intensity func-
tions Īp(f) were found to be insufficiently smooth to allow for
the robust detection of gestural landmarks, so smoothed tissue
velocity dÎp/dt was estimated from the regression coefficients
b of the interpolated intensity functions Îp (Eq. 5).
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Figure 3: Tissue velocity estimated from intensity function:
intervocalic Italian stop [ak:o]. Onset of closure gesture es-
timated at 20% of maximum positive tissue velocity (into con-
striction); Release gesture offset estimated at 20% of maximum
negative velocity (away from constriction target).

The timing of articulatory landmarks associated with the for-
mation and release of consonant constrictions can be estimated
using thresholds in the derived velocity functions (Table 1). For
example, the beginning and end of the closure and release ges-
tures hypothesized to underlie the production of an Italian in-
tervocalic dorsal stop are indicated on the velocity and intensity
functions shown in Fig. 3. The interval of maximal consonan-
tal constriction may be estimated by locating thresholds around
the negative-going zero-crossing of the velocity function (a 70%
threshold constriction plateau is illustrated in Fig. 3).

3. Results
For the data analyzed so far, automatic constriction location was
best achieved over a search space extending 2 to 3 pixels below
the upper limit defined by the passive articulators (Fig. 1), cal-
culating local intensity functions within a 4-pixel neighborhood
(Eq. 1: r = 1), examining intensity correlations over an 8-pixel
nearest-neighbors grid (Eq. 3: d = 1), and selecting for greater
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ARTICULATORY EVENT TEMPORAL LANDMARK
Closure gesture start dÎp/dt > β ·max(dÎp/dt)

Closure gesture end max(Îp)

Release gesture start max(Îp)

Release gesture end dÎp/dt > β ·min(dÎp/dt)

Table 1: Temporal location of gestural landmarks in estimated
tissue velocity function.

changes in local intensity, rather than more highly correlated
pixel activity over wider regions (Eq. 4: α < 0.2).

Constriction kinematics were estimated by calculating
mean regional intensity within a 3-pixel radius (Eq. 1: r = 3).
Intensity function smoothing and tissue velocity dÎp/dt esti-
mation was found to be most effective when Îp was inter-
polated using a gaussian kernel width parameter in the range
0.6 < h < 1.4. Constriction closure gestural onset, and con-
striction release gestural offsets were estimated to occur within
a 10% to 40% threshold of maximum and minimum tissue ve-
locities, respectively (Table 1: 0.1 < β < 0.4).

Maximal constriction (labial contact, or some part of the
tongue in contact with the passive articulators) was typi-
cally observed while tissue velocity remained in the range
0.8min(dÎp/dt) < dÎp/dt < 0.8max(dÎp/dt) – a result
which is consistent with the hypothesis that the target constric-
tion degree for stop consonants is negative [18, 13].

3.1. Validation

The accuracy with which articulatory activity is estimated us-
ing this technique can be assessed by comparing derived inten-
sity functions with direct measurements of constriction degree
taken from the same images. For the intervocalic dorsal stop
sequences examined in §2.2–2.3, tissue boundaries defining the
midsagittal airway in each frame were identified using a semi-
automatic segmentation algorithm [7], and corrected manually
where necessary.

For each frame, the shortest distance between the tongue
and the velar constriction target c was calculated from the tis-
sue boundaries, to produce a timecourse of constriction for-
mation and release (Eq. 6). Constriction degree was also es-
timated by inverting the intensity function Īc(f) calculated at
the target, and scaling by the ratio of maximum intensity DRc

and maximum constriction degree CDm (Eq. 7). Aperture-
measured CDm(f) and intensity-estimated CDe(f) constric-
tion functions for the intervocalic dorsal are compared in Fig. 4.

CDm(f) = min(||c− tongue(f)||) (6)
CDe(f) = max(CDm)/DRc · (DRc − Īc(f)) (7)

4. Applications
Because it allows for rapid, automatic characterization of con-
striction kinematics, the method described here is beginning to
provide important insights into the temporal and spatial proper-
ties of consonant production.

4.1. Characterizing Coronal Place of Articulation

When languages contrast multiple coronal consonants, these
segments are typically characterized by fine articulatory differ-
ences [19, 20]. A proper understanding of coronals requires
detailed knowledge about which part(s) of the tongue come into
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Figure 4: Change in dorsal constriction degree over time: in-
tervocalic Italian stop [ako]. (i) midsagittal aperture measured
between velar target and closest point on tongue (solid line);
(ii) estimated aperture calculated from mean pixel intensity in
vicinity of velar target pixel (broken line).

contact with different regions of the teeth, alveolar ridge, and
palate; however, comprehensive information about place of ar-
ticulation has been difficult to obtain from data acquired with
sensing modalities other than palatography.

The utility of direct image analysis as a means of examin-
ing place of articulation is demonstrated in the data illustrated in
Fig. 5. Place of articulation was calculated automatically, using
the method described in §2.2, for 5 utterances of the intervocalic
coronal stop [ada] and 10 utterances of the intervocalic lateral
[ala], by the same speaker of Italian. For the coronal stop /d/,
the mean center of articulatory activity occurs at pd = (24,27);
for the coronal lateral /l/, the mean center was located at pl =
(25.4,26.3), a place of articulation approximately 6 mm poste-
rior to that of the stop. These data are consistent with previous
characterizations of Italian /d/ as dental, and /l/ as alveolar
[21]; further analysis of articulatory differences in Italian stops
using this method is reported in [22].

Figure 5: Characterization of Place of Articulation: Italian
Coronals. Left: intervocalic stop [ada]; Right: intervocalic lat-
eral [ala], Tissue boundaries indicate tongue position at point
of maximal constriction. Red point indicates mean center of ar-
ticulation estimated over multiple utterances of each consonant.

4.2. Analyzing Consonant Duration

Because it provides information about the temporal evolution
of constrictions in the vocal tract, the method described here
can provide insights into timing differences in consonant pro-
duction. Smoothed intensity functions of labial singleton and
geminate stops are compared in Fig. 6. The total duration of the
labial gesture (onset of closure to offset of release) for the gem-
inate consonant is estimated to be 520 msec – approximately
30% longer than the singleton consonant (401 msec). Duration
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differences for Italian stops have been analyzed in detail using
this method in [22].
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Figure 6: Estimation of Constriction Duration: Italian Labi-
als. Solid line: intensity function for intervocalic geminate stop
[op:i]; Broken line: intensity function for singleton stop [opi],
both produced by adult male speaker of Standard Italian.

5. Discussion
The method described here represents a further contribution to
the set of tools being developed for direct image analysis of
rtMRI data [23, 24]. These approaches offer important ad-
vantages over other methods of analysis, being relatively noise
robust and immune to segmentation inconsistencies between
frames. As such, they allow for rapid experimentation and data
discovery approaches to the study of speech production, and fa-
cilitate the use of phonetic data acquired using rtMRI, without
the need for extensive post-processing of image sequences.

The major limitation of the current technique is that it de-
pends on the ability to reliably detect correlated intensity fluc-
tuations in a specified region, and is therefore restricted in ap-
plication to phonetic phenomena which produce such a change
in the vocal tract, such as intervocalic consonant production.

The utility of this method will be extended with the devel-
opment of more sophisticated methods of validation, and the use
of richer datasets, including multi-modal data acquired from the
same speakers. Higher frame rates and improved SNR will af-
ford more accurate estimation of constriction kinematics. While
all of the examples shown in this paper involve midsagittal ar-
ticulation, the same method can be applied to the analysis of
MR data acquired from other imaging planes, for example in
the coronal analysis of tongue grooving.

6. Conclusion
Analysis of regional correlated pixel intensity variation has
been shown to be a viable method of estimating articulatory
activity from rtMRI data. Both place of articulation and con-
striction kinematics of intervocalic consonantal production can
be robustly estimated from MR image sequences, without the
need for tissue segmentation. The approach is beginning to pro-
vide new insights into aspects of consonant production which
are difficult to study using traditional phonetic methodologies.
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