
Automatic Data-Driven Learning of Articulatory Primitives from Real-Time
MRI Data using Convolutive NMF with Sparseness Constraints

Vikram Ramanarayanan, Athanasios Katsamanis, and Shrikanth Narayanan

Signal Analysis and Interpretation Lab (SAIL), Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA
vramanar@usc.edu, <nkatsam,shri>@sipi.usc.edu

Abstract
We present a procedure to automatically derive inter-

pretable dynamic articulatory primitives in a data-driven man-
ner from image sequences acquired through real-time magnetic
resonance imaging (rt-MRI). More specifically, we propose a
convolutive Nonnegative Matrix Factorization with sparseness
constraints (cNMFsc) to decompose a given set of image se-
quences into a set of basis image sequences and an activa-
tion matrix. We use a recently-acquired rt-MRI corpus of read
speech (460 MOCHA-TIMIT sentences from 4 speakers) as a
test dataset for this procedure. We choose the free parame-
ters of the algorithm empirically by analyzing algorithm per-
formance for different parameter values. We then validate the
extracted basis sequences using an articulatory recognition task.
We finally attempt an interpretation of the extracted basis set of
image sequences in an Articulatory Phonology gesture-based
framework [1].
Index Terms: real-time MRI, gestures, Nonnegative Matrix
Factorization, sparse representations, articulatory recognition.

1. Introduction
Extracting interpretable representations from raw articulatory
data is critical for better understanding, modeling and artificial
reproduction of the human speech production process. If we
view the speech planning and execution mechanism in humans
as a control system, we would like to understand the proper-
ties and characteristics of the system such as the goals and con-
straints of the plan and the architecture of the system among
others. For this we would need an understanding of how these
characteristics are specified or represented in inputs and outputs
of the system, i.e., so-called primitive representations. Recently
there have been studies in the literature that have attempted to
further our understanding of primitive representations in biolog-
ical systems using ideas from linear algebra and sparsity theory.
For example, studies have suggested that neurons encode sen-
sory information using only a few active neurons at any point
of time, allowing an efficient way of representing data, forming
associations and storing memories [2]. It has been also been
argued that for human vision the spatial visual receptive fields
in the brain might be employing a sparse and overcomplete ba-
sis for representation [2], and quantitive evidence has been put
forth for sparse representations of sounds in the auditory cor-
tex [3]. However, not many computational studies have been
conducted into uncovering the primitives of speech production.

There are two broad approaches to attack this problem of
formulating representations of speech production - knowledge-
driven and data-driven. There have been many attempts at
knowledge-driven formulations in the linguistics literature. An

example is the framework of Articulatory Phonology [1] which
theorizes that the act of speaking is decomposable into units of
vocal tract actions termed “gestures.” So in this framework, a
simple set of linguistically-meaningful primitives are so-called
‘tract variables’ (or a set of constriction degrees and locations);
this is one possible basis set that can be used to characterize
the gestural lexicon of a language used in speech planning. In
this paper, however, we choose to adopt the less-explored data-
driven approach to extract sparse primitive representations from
real-time magnetic resonance imaging (rt-MRI) data. rt-MRI is
a recently-developed medical imaging technique that has been
successfully used to obtain simultaneous observations of dy-
namic vocal tract shape deformations in the midsagittal plane
along with synchronized audio speech data [4]. It can provide
a complete view of all vocal tract articulators as compared to
other imaging technologies such as ultrasound, electromagnetic
midsagittal articulography (EMMA), etc., thus affording use-
ful data for articulatory modeling and large-scale phonetics re-
search.

Modeling data vectors as sparse linear combinations of ba-
sis elements is a general approach (termed variously as dictio-
nary learning or sparse coding or sparse matrix factorization
depending on the problem formulation) which we will use to
solve our problem. These methods have been successfully ap-
plied to other problems in signal processing, machine learning,
and neuroscience. More specifically, we say that a signal x in
Rm admits a sparse approximation over a basis set of vectors or
’dictionary’ D in Rm×k with k columns referred to as ’atoms’
when one can find a linear combination of a small number of
atoms from D that is as “close” to x as possible (as defined by a
suitable error metric) [5]. Note that sparsity constraints can be
imposed over either the dictionary or the coefficients of the lin-
ear combination (or ’activations’) or both. In this paper, since
one of our main goals is to extract interpretable basis or dic-
tionary elements, we focus on matrix factorization techniques
such as Nonnegative Matrix Factorization (NMF)1 and its vari-
ants [10, 11, 7, 8] with sparsity constraints imposed on the acti-
vation matrix since not constraining the basis image sequences
would allow them a greater degree of interpretability. In ad-
dition, we would like to find a factorization such that only a
few basis functions are “activated” at any given point of time,
i.e., a sparse activation matrix. We further validate the learned
representations using a recognition task (as well as the regular

1We use NMF-based techniques since these have been shown to
yield basis elements that can be assigned meaningful interpretation de-
pending on the problem domain [6, 7, 8]. It is also worth noting that [9]
gives specific conditions required for NMF algorithms to give a “cor-
rect” decomposition into parts, which affords us some mathematical
insight into the decomposition.



approximation error metric).
The rest of this paper is organized as follows: we give a

brief description of the data used in Section 2 followed by a de-
tailed layout of the problem formulation in Section 3. We next
present a validation and interpretation of the representations ex-
tracted by our approach in Section 4 followed by a discussion
of future work.

2. Data
For this study we used the MRI-TIMIT database collected by
our lab which currently consists of read speech data (MRI image
sequences and synchronous noise-cancelled audio) collected
from 4 native (2 male and 2 female) American English speakers
while lying supine in an MRI scanner. The stimuli consisted
of 460 sentences corresponding to those used in the MOCHA-
TIMIT corpus [12].

2.1. Recording setup

The data was obtained using a GE Signa Excite HD 1.5 T
scanner with designed spiral gradient waveforms capable of
22mT/m amplitudes and 77mT/m/sec slew rates. The pulse se-
quence used was a low flip angle 13-interleaf spiral gradient
echo sequence with the following parameters: a repetition time
of TR = 6.164ms, a 20 x 20 cm2 field of view (FOV) resulting in
an image of 68 pixels by 68 pixels, a 3 x 3mm2 in-plane spatial
resolution, and an 80.1 ms temporal resolution corresponding to
12.5 frames per second. The slice thickness used was 5mm. A
4-channel upper airway receive coil array was used for RF sig-
nal reception. In the 4-channel receive coil array, two coil ele-
ments are anterior and the other two coil elements are posterior
to the head and neck. Synchronized audio was recorded simul-
taneously using a fiber-optic microphone. In order to guarantee
sample-exact synchronicity the audio sample clock is derived
from the MRI scanner’s 10MHz master clock and the recording
is triggered on and off using the RF master-exciter unblank sig-
nal from the MRI scanner. For further details, please see [13].

2.2. Data postprocessing

The MRI scanner emits high intensity gradient noise in the au-
dible range during scans, which makes acoustic analysis of any
audio record very difficult. We use a model-based noise cancel-
lation technique [13] which takes into account the periodicity of
the gradient noise to solve this problem.

The audio data is phonetically aligned using the SailAlign
tool [14]. In order to allow the aligner tool to adapt better phone
models to our data, instead of aligning each audio file individ-
ually all audio files are concatenated into a master audio file
which is passed as input to the aligner tool (the parameters of the
aligner are optimized by trial and error to obtain a good working
configuration). The final database consists of audio, MRI video
and phone- and word-level transcriptions of 460 sentences (cor-
responding to those used in the MOCHA-TIMIT corpus [12]),
split into 92 files contaning 5 sentences each.

3. Problem formulation
3.1. Nonnegative Matrix Factorization and its extensions

The aim of NMF (as presented in [10]) is to approximate a non-
negative input data matrix V ∈ R≥0,M×N as the product of
two non-negative matrices, a basis matrix W ∈ R≥0,M×K and
an activation matrix H ∈ R≥0,K×N (where K ≤ M ) by min-

imizing the reconstruction error as measured by either a Eu-
clidean distance metric or a Kullback-Liebler (KL) divergence
metric. Although NMF provides a useful tool for analyzing
data, it fails to account for potential dependencies across suc-
cessive columns of V; thus a regularly repeating dynamic pat-
tern would be represented by NMF using multiple bases, instead
of a single basis function that spans the pattern length. This mo-
tivated the development of convolutive NMF [7], where instead
we model V as:

V ≈
T−1X
t=0

W(t) · ~Ht
= V (1)

where each column of W(t) ∈ R≥0,M×K is a time-varying
basis vector sequence, each row of H ∈ R≥0,K×N is its corre-

sponding activation vector and the ~(·)
i

operator is a shift op-
erator that moves the columns of its argument by i spots to
the right, as detailed in [7]. In this case the author uses a
KL divergence-based error criterion and derives iterative update
rules for W(t) and H based on this criterion. This formulation
was extended by O’Grady and Pearlmutter [8] to impose spar-
sity conditions on the activation matrix. However the parameter
which trades-off sparsity of the activation matrix against the er-
ror criterion in their case (λ) is not readily interpretable, i.e., it
is not clear what value λ should be set to to yield optimal in-
terpretable bases. We instead choose to use a sparseness metric
based on a relationship between the l1 and l2 norms (as pro-
posed by [11]) as follows:

sparseness(x) =

√
n− (

P
i |xi|)√P

i x2
i√

n− 1
(2)

where n is the dimensionality of x. This function equals unity
iff x contains only a single non-zero component and 0 iff all
components are equal upto signs and smoothly interpolates be-
tween the extremes. More recently Wang et al. [15] showed
that using a Euclidean distance-based error metric was more
advantageous (in terms of computational load and accuracy on
an audio object separation task) than the KL divergence-based
metric and further derived the corresponding multiplicative up-
date rules for the former case. It is this formulation along with
the sparseness constraints on H (as defined by Equation 2) that
we use to solve our problem. However, incorporation of the
sparseness constraint also means that we can no longer use mul-
tiplicative update rules for H – so we use gradient descent fol-
lowed by a projection step to update H iteratively (as proposed
by [11]). The added advantage of using this technique is that it
has been shown to find a unique solution of the NMF problem
with sparseness constraints [16].

min
W,H
‖V−

T−1X
t=0

W(t) · ~H
t
‖2 s.t. sparseness(hi) = Sh, ∀i. (3)

where hi is the ith row of H and 0 ≤ Sh ≤ 1 is user-defined.

3.2. Extraction of primitive representations from rt-MRI
data

If I1, I2, . . . , IN are theN images (of dimension n1×n2) in an
rt-MRI sequence re-formed into M × 1 column vectors (where
M = n1 × n2), then we can design our data matrix V to be:

V = [I1 |I2 | . . . |IN ] ∈ RM×N (4)



In our case, each image is of dimension 68 pixels by 68 pixels,
i.e.,M = 68·68 = 4624. We now aim to find an approximation
of this matrix V using a basis tensor W and an activation matrix
H. A complication which arises here is that for a given speaker,
there are 92 files (or image sequences), each of which results
in a 4624 × N data matrix V (where N is equal to the num-
ber of frames in that particular sequence). However we would
like to obtain a single basis tensor W for all files so that we
obtain a primitive articulatory representation for any sequence
of articulatory movements made by that speaker. One possible
way to do this is to concatenate all 92 image sequences into one
huge matrix, but the dimensionality of this matrix makes com-
putations intractably slow. In order to avert this problem we
propose a second method that optimizes W jointly for all files
and H individually per file. The algorithm is as follows:

1. Initialize W to a random tensor of appropriate dimen-
sion.

2. W Optimization.
for Q of N files in the database do

(a) Initialize H to a random matrix of requisite dimen-
sions.

(b) PROJECT. Project each row of H to be non-
negative, have unit l2 norm and l1 norm set to
achieve the desired sparseness [11].

(c) ITERATE.

i. H Update.
for t = 1 to T do

· Set Ĥ(t) = H - µH W(t)(
←−
V

t

-
←−
V

t

).
· PROJECT H.

H← 1
T

P
Ĥ(t).

ii. W Update.
for t = 1 to T do

· Set W(t) = W(t)⊗V(
−→
H

t

)T �V(
−→
H

t

)T .

3. for the rest of the files in the database do

· H Update keeping W constant.

Step 2 is repeated for an empirically-specified number of iter-
ations till convergence is reached. The stepsize parameter µH
of the gradient descent procedure described in Step 2 is also set
manually based on empirical observations.

3.3. Selection of optimization parameters

In this section we briefly describe how we set the values of the
various free parameters of the algorithm. The temporal extent
of each basis sequence (T ) was set to either 4 or 5, since this
corresponds to a reconstructed image sequence time period of
approx. 170ms and 216ms respectively. Since we want the acti-
vations of these basis vectors to be as sparse as possible (and as
few basis vectors active at any given point of time) we choose
the sparseness parameter (Sh) to be in the range 0.7−0.9. This
parameter as well as the optimal number of bases (K) was cho-
sen by looking at the performance of the algorithm for different
values of Sh and K (an example graph is plotted in Figure 1).
Note that the figure shows the performance of the algorithm for
T = 1. Since increasing the value of T just causes an increase
in the number of NMF operations by a factor of T , we can use

this to get a general idea of how the algorithm performs2 with
different values of Sh and K. One general trend which is seen
is that the squared error (or value of the objective function) af-
ter 50 iterations decreases as K increases – this makes intuitive
sense since we expect to get a better approximation of V as
K approaches the rank of V . In addition, the objective func-
tion is lower for lower values of the sparseness parameter Sh.
Based on such observations and the fact that we would like the
dimension of the extracted basis to be as small (for better inter-
pretability), we choose Sh = 0.85 and K = 15.

Figure 1: Performance of the algorithm as measured by the ob-
jective function value (as defined by equation 1) on a dataset
file for T = 1 different values of sparseness Sh and number of
bases K.

4. Validation and interpretation
5. Discussion and future work

We have presented an algorithm to extract basis image se-
quences of articulatory movements from real-time MRI data.
As one can see in Figure 2, the extracted basis is somewhat in-
terpretable to the trained linguist; for example, one can see the
formation of a tongue-tip and tongue dorsum closures captured
by 2 of the basis functions. Other tongue shapes, such as the
bunched shape formed during the production of an /i/ vowel,
are also seen. We further notice a redundancy in some of the se-
quences extracted, such as those of the neutral vocal tract shape,
but this is to be expected since this posture is adopted most fre-
quently adopted during running speech. Note that some of the
vocal tract shapes not represented well include extreme shapes,
such as that assumed during an /a:/ vowel.

In future work, we would like to develop and extend the
proposed method to find a link between knowledge-driven rep-
resentations of articulatory movement and data-driven repre-
sentations (such as the proposed method) to obtain truly inter-
pretable bases of articulatory actions. In addition, we would like
to explore other approaches, probabilistic and otherwise, from
the sparse coding literature to improve the performance of the
algorithm.

2Given the large dimensionality of the videos in our problem, the
algorithm takes a long time to run for a given set of parameters; hence
we used a temporal dimension of T = 1 to optimize Sh and K.
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Figure 2: A set of 15 basis sequences of temporal extent 5
frames.


