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ABSTRACT

Recent studies indicate that bidirectional Long Short-Term Memory
(BLSTM) recurrent neural networks are well-suited for automatic
emotion recognition systems and may lead to better results than sys-
tems applying other widely used classifiers such as Support Vector
Machines or feedforward Neural Networks. The good performance
of BLSTM emotion recognition systems could be attributed to their
ability to model and exploit contextual information self-learned via
recurrently connected memory blocks which allows them to incorpo-
rate information about how emotion evolves over time. However, the
actual amount of bidirectional context that a BLSTM classifier takes
into account when classifying an observation has not been investi-
gated so far. This paper presents a methodology to systematically in-
vestigate the number of past and future utterance-level observations
that are considered to generate an emotion prediction for a given ut-
terance, and to examine to what extent this temporal bidirectional
context contributes to the overall BLSTM performance.

Index Terms— emotion recognition, Long Short-Term Mem-
ory, sequential Jacobian, context modeling

1. INTRODUCTION

Automatic emotion recognition (AER) has become an important re-
search area and finds many applications in modern human-computer
interaction scenarios, including call-center dialogue systems, con-
versational agents [1], and behavioral bioinformatics [2]. To cope
with the challenge of extracting affective states from audio and video
data captured during naturalistic spontaneous interactions, various
techniques for feature extraction and classification have been pro-
posed. Partly, these methods have been inspired by related pat-
tern recognition fields such as automatic speech recognition or im-
age processing, leading to a variety of emotion recognition systems
based, e. g., on Hidden Markov Models (HMM), Support Vector Ma-
chines (SVM), or neural networks.

In contrast to static classification scenarios, modern AER is in-
fluenced by the growing awareness that context plays an important
role in expressing and perceiving emotions [3]. Human emotions
tend to evolve slowly over time and utterances observed in isolation
might not be sufficient to recognize the expressed emotion. This mo-
tivates the introduction of some form of context-sensitivity in emo-
tion classification frameworks. For example, it was shown that AER
performance in dyadic interactions profits from taking into account
speech cues from the past utterance of a speaker and his interlocutor
[4].

Recently, bidirectional Long Short-Term Memory (BLSTM)
neural networks were introduced in order to overcome the vanish-
ing gradient problem of conventional Recurrent Neural Networks

(RNNs) [5, 6]. BLSTM neural networks make use of an arbi-
trary, self-learned amount of past and future contextual information.
Therefore, they seem well suited for emotion recognition applica-
tions where modeling the emotional history during a conversation is
of interest. Application of BLSTM networks for speech-based [7]
and audiovisual [8, 9] emotion recognition has led to performance
gains in context-sensitive AER compared to systems that do not
make use of context information, such as context-free HMM or
SVM-based approaches.

Yet, the actual amount of contextual information that is ex-
ploited within a BLSTM network for emotion classification has not
been investigated so far and networks are often seen as a ‘black
box’ being less transparent than, e. g., HMM systems. This pa-
per presents a methodology firstly, to systematically determine the
amount of context that is used by BLSTM networks to classify utter-
ances of a speaker during a conversation and, secondly, examine the
extent that this available context contributes to the overall BLSTM
performance. Our goal is to better understand the effect of BLSTM
modeling of human emotions and to gain insights supporting fu-
ture AER system design. For our analyses, we train and evaluate
our recently proposed audiovisual BLSTM emotion recognition
framework [8] on the IEMOCAP database [10], a large multimodal
emotional database.

2. BIDIRECTIONAL LONG SHORT-TERM MEMORY

A popular technique for context-sensitive classification based on
neural networks is the application of RNNs. RNNs are able to
model a certain amount of context by using cyclic connections and
can in principle map from the entire history of previous inputs to
each output. However, the analysis of the error flow in conventional
recurrent neural nets resulted in the finding that long-range context
is inaccessible to standard RNNs since the backpropagated error
either blows up or decays over time (vanishing gradient problem).
An effective approach to overcome the vanishing gradient problem
is the Long Short-Term Memory architecture [5], which is able to
store information in linear memory cells over a longer period of time
and can learn the optimal amount of contextual information relevant
for the classification task. An LSTM hidden layer is composed of
multiple recurrently connected subnets which will be referred to
as memory blocks in the following. Every memory block consists
of self-connected memory cells and three multiplicative gate units
(input, output, and forget gates). Since these gates allow for write,
read, and reset operations within a memory block, an LSTM block
can be interpreted as (differentiable) memory chip in a digital com-
puter. The overall effect of the gate units is that the LSTM memory
cells can store and access information over long periods of time and
thus avoid the vanishing gradient problem (for details see [6]).
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A shortcoming of standard RNNs is that they have access to past
but not to future context. This can be overcome by using bidirec-
tional RNNs [11], where two separate recurrent hidden layers scan
the input sequences in opposite directions. The two hidden layers
are connected to the same output layer, which therefore has access to
context information in both directions. In this study, we use a com-
bination of the principle of bidirectional networks and the LSTM
technique (i. e., bidirectional LSTM) to exploit context between suc-
cessive spoken utterances for context-sensitive emotion recognition.

3. DATABASE AND ANNOTATION

Our experiments are based on the Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) database [10] which contains approxi-
mately 12 hours of audio-visual data from five mixed gender pairs of
actors. IEMOCAP includes detailed face information obtained from
motion capture as well as video and audio of each session. Two
techniques of actor training were used; scripts and improvisation of
hypothetical scenarios. The goal was to elicit emotional displays that
resemble natural emotional expression and are generated through a
suitable context. As a result, context is an important factor in rec-
ognizing these emotional expressions, as is the case in most real-life
interactions.

Dyadic sessions of approximately five minute length were
recorded and were later manually segmented into utterances. Each
utterance was annotated into nine categorical (such as anger, happi-
ness, or neutrality) as well as dimensional tags (valence, activation,
dominance) by multiple human annotators. Dimensional tags take
integer values that range from one to five. The dimensional tag of
an utterance is the average of the tags given by two or three annota-
tors. We focus on the classification of valence and activation, which
enables us to make use of all the available data, even utterances
for which there was no categorical inter-annotator agreement, and
thus no categorical label exists. We perform classification of three
levels of valence and activation: level 1 contains ratings in the range
[1,2], level 2 contains ratings in the range (2,4) and level 3 contains
ratings in the range [4,5]. These levels intuitively correspond to low,
medium and high activation respectively, and to negative, neutral
and positive valence respectively.

In addition, we also examine the joint classification of the emo-
tional dimensions by building three, four, and five clusters in the
valence-activation space, as in [8]. The cluster midpoints in the emo-
tional space are determined by applying the K-means algorithm on
the annotations of the respective training sets. The ground truth of
every utterance is assigned to one of the clusters using the minimum
Euclidean distance between its annotation and the cluster midpoints.
The intuition for clustering the valence-activation space is to build
classifiers that provide richer and more complete emotional infor-
mation, compared to classifying only valence or only activation.

4. AUDIO-VISUAL FEATURE EXTRACTION

Visual feature extraction is based on the normalized (x,y,z) coordi-
nates from 46 Motion Capture (MoCap) facial markers, located as
shown in [10]. In order to obtain a low-dimensional representation
of the facial marker information, we use Principal Feature Analysis
(PFA, see [12]). This method performs Principal Component Anal-
ysis (PCA) as a first step and selects features (here marker coordi-
nates) so as to minimize the correlations between them. We select
30 features (covering approximately 95% of the total variability) and
append the first derivatives, which results in a 60-dimensional repre-
sentation of visual information. The MoCap framerate is 60 fps. The
visual feature selection and normalization framework is described in

detail in our previous work [13].
As low-level speech features, we extract mean and variance nor-

malized 12 MFCC coefficients, 27 Mel Frequency Band coefficients
(MFB), pitch, and energy, together with their first derivatives, using
the Praat Toolbox. Both, audio and visual features are extracted at a
framerate of 25 ms, with a window size of 50 ms. To obtain one static
feature vector per utterance, we use a set of statistical functionals that
are computed from the low-level acoustic and visual features. These
functionals include means, standard deviations, linear and quadratic
regression parameters (slope, offset, linear/quadratic approximation
error), maximum and minimum positions, skewness, kurtosis, quar-
tiles, inter-quartile ranges, and percentiles. All functionals are calcu-
lated using our openSMILE toolkit [14]. In order to reduce the size
of the resulting feature space, we conduct a cyclic Correlation based
Feature Subset Selection (CFS) on the training set. This results in an
automatic selection of between 66 and 224 features, depending on
the classification task.

5. EXPERIMENTS

5.1. Emotion Recognition using BLSTM Networks

To assess speaker independent emotion recognition performance
of the applied BLSTM networks we carry out a cyclic leave-one-
speaker-out cross validation. The mean and standard deviation of
the number of test and training utterances across the ten folds is
498±60 and 4475±61, respectively. All BLSTM networks consist
of 128 memory blocks per input direction, with one memory cell
per block. The number of input nodes corresponds to the number
of different features per utterance whereas the number of output
nodes corresponds to the number of target classes. For comparison
reasons, we also train SVMs using our utterance-level features.

In Table 1, we present the average unweighted F1-measure over
the 10 speakers (folds) that is obtained for SVMs and the proposed
audio-visual BLSTM classifier. The BLSTM approach outperforms
context-free SVMs for all classification tasks. To investigate the im-
portance of having meaningful available context information during
BLSTM network training and decoding, we repeated all BLSTM
classification experiments using randomly shuffled data. Specifi-
cally, we processed the utterances of a given conversation in arbi-
trary order so that the network is not able to make use of meaningful
context information. As can be seen in Table 1, this downgrades
recognition performance (average F1-measure) for all classification
tasks. To test the statistical significance of this result, we performed
paired t-tests to compare the average F1-measures and we found that
BLSTM performs significantly worse (p=0.05) when we shuffle the
input utterances. The normality assumption of the paired t-tests re-
garding the F1 distribution are satisfied according to the Shapiro-
Wilk test. The performance gap suggests that the good performance
of the BLSTM classifiers is to a large extent due to their ability to
effectively learn an adequate amount of relevant emotional context
from past and future observations. It can also be interpreted as ev-
idence that learning to incorporate temporal context information is
relevant for human emotion modeling.

5.2. Sequential Jacobian Analysis

An impression of the amount of contextual information that is used
by the BLSTM network can be gained by measuring the sensitivity
of the network outputs to the network inputs. When using feedfor-
ward neural networks, this can be done by calculating the Jacobian
matrix J whose elements Jki correspond to the derivatives of the
network outputs yk with respect to the network inputs xi. To ex-
tend the Jacobian to recurrent neural networks, we have to specify
the timesteps (representing utterances) at which the input and output
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classification task classifier

SVM BLSTM BLSTM (shuffled)

valence 61.61 ± 4.75 65.12 ± 5.13 59.71 ± 4.51

activation 51.29 ± 3.84 54.90 ± 5.02 52.10 ± 6.86

three clusters 67.86 ± 5.36 72.35 ± 5.10 67.86 ± 5.08

four clusters 57.03 ± 6.05 62.80 ± 6.69 59.27 ± 6.40

five clusters 48.34 ± 7.58 54.60 ± 5.85 51.68 ± 6.48

Table 1. Recognition performances [%] of SVMs and of BLSTM
networks for the five classification tasks. For BLSTMs we train on
the original sequence of utterances and on utterances that are ran-
domly shuffled: mean and standard deviation of F1-measure across
the 10 folds.

variables are measured. Thus, we calculate a four-dimensional ma-
trix called the sequential Jacobian [6] to determine the sensitivity of
the network outputs at time t to the inputs at time t′:

J tt′
ki =

∂yt
k

∂xt′
i

Figure 1(a) shows the derivatives of the network outputs at time
t = 16 with respect to the different network inputs (i. e., features)
at different timesteps t′ for a randomly selected session consisting
of 30 utterances when using a BLSTM network for the discrimi-
nation of five emotional clusters. Since we use BLSTM networks
for utterance-level prediction, each timestep corresponds to one ut-
terance. Note that the absolute magnitude of the derivatives is not
important. We are rather interested in the relative magnitudes of
the derivatives to each other, since this determines the sensitivity of
outputs with respect to inputs at different timesteps. Of course the
highest sensitivity can be detected at timestep t′ = 16, which means
that the current input has the most significant influence on the cur-
rent output. However, also for timesteps smaller or greater than 16,
derivatives different from zero can be found. This indicates that also
past and future utterances affect the current prediction. As positive
and negative derivatives are of equal importance, Figure 1(b) shows
the absolute values of the derivatives in Figure 1(a). Finally, Fig-
ure 1(c) displays the corresponding derivatives summed up over all
inputs and normalized to the magnitude of the derivative at t′ = 16.

In order to systematically evaluate how many past and future
inputs are relevant for the current prediction, we determined how
many utterances before and after the current utterance (e. g., utter-
ance 16 in the example given in Figure 1) have a sensitivity greater
or equal to 3 % of the maximum sensitivity. To this end, we cal-
culated projections of the sequential Jacobian as in Figure 1(c) for
each timestep t in each session and each fold. Figure 2(a) shows the
number of relevant past and future utterances dependent on the posi-
tion in the sequence (i. e., dependent on the utterance number within
a session) when using a BLSTM network for the discrimination of
five clusters in the emotional space (the corresponding figures for
the other classification tasks are very similar and are omitted). The
number of past utterances for which the sensitivity lies above the
3 % threshold increases approximately until the eighth utterance in
a session. As more and more past utterances become available, the
graph converges to a value of between seven and eight, meaning that
roughly seven to eight utterances of past context are used for a pre-
diction. For the first few emotion predictions the network uses about
eight utterances of future context. The slight decrease of the num-
ber of used future utterances for higher utterance numbers (i. e., for
utterances occurring later in a session) is simply due to the fact that
some sessions consist of less than 30 utterances, which means that
towards the end of a session, less future utterances are available on
average. Figure 2(b) shows the number of relevant preceding and

(a) Derivatives at time t = 16.

(b) Absolute values of the derivatives in Figure 1(a).

(c) Derivatives summed up over all inputs and normalized.

Fig. 1. Derivatives of the network outputs at time t = 16 with re-
spect to the different network inputs at different timesteps t′; ran-
domly selected session consisting of 30 utterances (BLSTM network
for the discrimination of five emotional clusters).

successive utterances for the BLSTM network trained on randomly
shuffled data. As can be seen, the amount of used context is less than
for the BLSTM trained on correctly aligned utterances. Even though
no reasonable emotional context can be learned when training on ar-
bitrarily shuffled data, the network still uses context. One reason for
this could be that BLSTM attempts to learn other session-specific
charactieristics, such as speaker characteristics.

Figure 3 shows the number of relevant past utterances when con-
sidering different classification tasks and sensitivity-thresholds from
1 to 10 %. Again, we can see that networks trained on randomly
shuffled data use less context (see dashed lines in Figure 3) while
the amount of context exploited for the different classification tasks
is relatively similar.

6. CONCLUSION AND OUTLOOK

In the light of recent studies which showed that context modeling
via Long Short-Term Memory networks is well-suited for emotion
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(a) BLSTM network trained on utterances in the correct order. (b) BLSTM network trained on randomly shuffled data.

Fig. 2. Average number of relevant past and future utterances dependent on the position in the sequence when using a BLSTM network for
the discrimination of five emotional clusters (3 % sensitivity-threshold).

Fig. 3. Average number of relevant past utterances dependent on
the sensitivity-threshold; straight lines: utterances in correct order;
dashed lines: randomly shuffled data.

recognition applications [8] [9], we propose a methodology to ana-
lyze the amount of past and future context that is used by a BLSTM
network to predict the emotional expression of a spoken utterance.
In addition, we investigated the contribution of contextual informa-
tion to the overall BLSTM performance, by randomly shuffling the
order of utterances within a conversation so that the network fails
to learn and exploit meaningful context. Systematic evaluations of
the sequential Jacobian of trained BLSTM networks revealed that
approximately eight past (and if available, also future) utterances
are considered by the network as contextual information, when us-
ing a 3 % sensitivity-threshold as defined in Section 5. When the
input utterances are randomly shuffled, the BLSTM network uses
fewer past and future utterances (around six). Emotion recognition
results showed that performance significantly decreases when net-
works are trained on randomly shuffled data. This suggests that good
BLSTM performance is due to the network’s ability to learn an ade-
quate amount of relevant emotional context around the current obser-
vation. When such meaningful context is not present, performance
degrades. Furthermore, this result illustrates that modeling typical
emotional evolution during a conversation could provide useful in-
formation for emotion recognition systems.

These findings are specific to the emotion recognition database
that we examine, since the dynamics of emotional states may gen-
erally vary across different types of interaction. Yet, our experi-
ments on the IEMOCAP corpus present a first attempt to quantify the
amount of context that is automatically learned during training of an

emotion recognition system based on BLSTM. Future studies could
apply the proposed context analysis method for other databases and
scenarios, such as human-computer interactions, human-robot dia-
logues, and call-center data. This could help us gain insights re-
garding the flexibility and adaptiveness of LSTM context modeling,
as well as the characteristics of different emotion recognition user-
cases.
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