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Abstract—Automated processing of digitized soilsection images
reveals elements of soil structure and draws primary estimates
of bioecological importance, like ground fertility and changes in
terrestrial ecosystems. We examine a sophisticated integration of
some modern methods from computer vision for image feature
extraction, texture analysis, and segmentation into homogeneous
regions, relevant to soil micromorphology. First, we propose
the use of a morphological partial differential equation-based
segmentation scheme based on seeded region-growing and level
curve evolution with speed depending on image contrast. Second,
we analyze surface texture information by modeling image varia-
tions as local modulation components and using multifrequency
filtering and instantaneous nonlinear energy-tracking operators
to estimate spatial modulation energy. By separately exploiting
contrast and texture information, through multiscale image
smoothing, we propose a joint image segmentation method for
further interpretation of soil images and feature measurements.
Our experimental results in images digitized under different
specifications and scales demonstrate the efficacy of our proposed
computational methods for soil structure analysis. We also briefly
demonstrate their applicability to remote sensing images.

Index Terms—Computer vision, image segmentation, remote
sensing, soil analysis, texture analysis.

I. INTRODUCTION

MAGE data in geosciences are common and require pro-

cessing and measurement schemes that range from small mi-
croscopic scales to large remote sensing scales. In this work,
we focus mainly to the first category and specifically in im-
ages of thin soilsections. The goal of soil micromorphology, as
a branch of soil science, is the description, interpretation, and
measurement of components, features, and fabrics in soils at
a microscopic level. Basic soil components are the individual
particles (e.g., quartz grains, clay minerals, plant fragments)
that can be resolved with the optical microscope together with
the fine material that is unresolved into discrete individuals.
Soil structure is concerned with the size, shape, sharpness, con-
trast, frequency, and spatial arrangement of primary particles
and voids. Many of these characteristics are a function of the
orientation of components and the direction in which they are
cut as well as of the magnification used. Soilsection images pro-
duced via a digitizing procedure, using conventional scanners,
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cameras, or microscopes under polarized light, exhibit a great
variety of geometric features. Important image features that pro-
vide useful information for soil structure quality evaluation in-
clude cluster/particle shape, either one-dimensional (1-D), such
as edges or curves, or two-dimensional (2-D), such as light or
dark blobs (small homogeneous regions of random shape), spa-
tial arrangement of soil components, and their texture.

The current analysis used in soilsection images is basically
confined to thresholding, histogram measurements, simple dig-
ital signal processing techniques and fractal dimension estima-
tion [1], [2]. Our general long-term research goal is to surpass
the aforementioned techniques and integrate modern computer
vision methodologies such as image segmentation and texture
analysis toward a high-level system capable of analyzing and
evaluating soilsection fertility and bioecological quality [3]. In
effect, the expensive and time-consuming process of traditional
biochemical analysis will be automated, enhanced by, and pos-
sibly coupled with computer vision techniques.

The research work presented here aims at coupling image
segmentation and texture analysis in the soilsection image
framework. Specifically, in the next sections we deal with
the segmentation of soil images into distinctive regions (crys-
tals, opaque material, organic matter, void spaces) employing
nonlinear morphological tools, curve evolution, and par-
tial differential equations (PDEs) methods. Additionally, by
using appropriate texture modeling, we propose efficient and
well-motivated extraction of features capable of quantifying
texture characteristics like roughness, geometrical complexity,
rate of change in local contrast variations, and orientation.
Finally, we couple the most prominent features of soilsection
images, color/intensity, geometry, and texture, and utilize
them so as to correctly lead the final segmentation process.
The presented methods can be extended to broader classes of
geoscience data and applied in general remote sensing surfaces.

II. IMAGE SEGMENTATION

Image segmentation is an important yet difficult computer vi-
sion task, as it requires to some extent a semantic understanding
of the image. Generally speaking, it is the process of parti-
tioning the image into disjoint regions, each one being homo-
geneous and connected with respect to some property, such as
gray-value, color, texture, motion. It can be divided into three
different but complementary stages, i.e., 1) preprocessing; 2) re-
gion/feature extraction; and 3) segmentation algorithm applica-
tion, each one being significant for the final segmentation result.

Amongst the variety of segmentation methods, the morpho-
logical watershed transform has proved to be very powerful and
effective, especially when coupled with nonlinear multiscale
morphological operators [4], [5]. The underlying idea is the
following: 1) a gradient image of the scene is constructed;
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2) for each object of interest or homogeneous region a marker
(set of feature points inside desired region) is detected; and
3) the watershed lines associated to the markers are constructed.
Watershed transform can be topographically described as a
flooding process, where the image function is considered as a
topographic surface immersed in water. The markers serve as
flooding sources, from where waves start emanating forming
various lakes. At points where different waves meet, a dam
is erected to avoid lake merging, which is in fact the water-
shed line that separates the image into different regions. In
mathematical morphology, flooding has been implemented via
immersion simulations [5] and hierarchical queues [4].

Apart from the morphological flooding approach, watershed
has also been modeled in a continuous way via the eikonal
(PDE) [6], [7], usually employing ideas from the field of
curve evolution [8]. Motivations for using PDEs include better
and more intuitive mathematical modeling, connections with
physics, and better approximation to the continuous geometry
of the problem. Using PDE modeling in the flooding process
of watershed transform, each emanating wave’s boundary is
viewed as a curve, which evolves with predefined speed. Specif-
ically, the boundary of the marker is considered as a moving
smooth closed curve C'(p,t) where p € [0, 1] parameterizes
the curve and ¢ is an artificial marching parameter. The PDE
that implements the watershed flooding, as well as its level set
approach [9] where the evolving curve is embedded as the zero
level setI'(t) = {(z,y) : ®(x,y,t) = 0} of a higher dimension
space-time function ®(z,y,t), are given by
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A(t) is either 1 if we perform only contrast-based segmentation
(height flooding) or A(t) = Area(C)) in case of contrast and
size segmentation (volume flooding) [10].

Efficient algorithms [11] to solve time-dependent eikonal
PDEs are the narrow-band level sets and the fast marching
method (for stationary formulations of eikonal PDEs).

III. TEXTURE ANALYSIS

Image texture refers to patterns caused by contrast variations
and an inherent inhomogeneity in natural surfaces, resulting
from properties such as roughness, depth, illumination, color,
etc. Texture analysis in computer vision aims at the problems
of feature extraction, segmentation and classification, synthesis,
and inferring shape from texture.

Elementary natural texture components can be interpreted as
locally smooth modulations and hence assumed nonstationary
signals, well localized within a narrow band in the spatial fre-
quency plane. Textured surfaces can be modeled by a sum of 2-D
spatial amplitude and frequency modulation (AM-FM) signals

K
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where each of the K components is a 2-D nonstationary
sine with a spatially varying amplitude ay(z,y) and a spa-
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tially varying instantaneous frequency vector &y(x,y) =
(wi(z,y),ws(z,y)). The amplitude models local contrast
variations, and the frequency vector contains rich information
about the locally emergent spatial frequencies [12], [13].

For the estimation of the 2-D modulation signals, an approach
of low complexity and small estimation error was developed in
[14] based on an energy operator W(f) £ ||Vf||?> — fV2f,
which is a multidimensional extension of the 1-D Teager en-
ergy operator. Applying ¥ to a 2-D AM-FM signal f(z,y) =
ak(x,y) cos[opr(z,y)], modeling a texture component, yields

Ulay cos(Pr)] =~ az||®'k||2. 4

The product in (4), which couples the squares of the instanta-
neous amplitude and frequency magnitude, may be called the
texture modulation energy. By the assumption that the instanta-
neous amplitude and frequency do not vary rapidly in space or
too greatly in value compared with the carriers, the above ap-
proximation error becomes negligible. A decoupling of this en-
ergy, in the two modulation signals, is possible by also applying
the energy operator on the image component derivatives 9 f /0x
and 0f /dy, via a nonlinear algorithm called energy separation
algorithm (ESA) [14]

~ |wk2($7y)|

~ |ax(z,y)|- ©)

o () v (%)

A unique, spatially varying AM-FM texture component is thus
characterized at each location by the estimated amplitude enve-
lope and magnitude of instantaneous frequencies.

The AM-FM models are not applied directly to an image, but
instead they are used on its bandpass filtered versions [12]. Iso-
lation of modulation components requires filtering mechanisms
with sufficient spatial and spectral localization, usually done by
filterbanks spanning various radial frequencies and orientations.
For the generating kernel, Gabor filters are an optimal choice,
following biological mechanisms, being compact and smooth
and attaining the lower limit of joint space—frequency resolution
uncertainty. Two-dimensional Gabor filters are characterized by
impulse responses of the form hy (z,y) = exp[—(z/a)? —
(y/B)?] cos (urx + viy), where (2ra) =1, (2r3) ~* are the rms
bandwidths in each dimension, and (ug, vy ) are the kth filter’s
central frequency coordinates.

Representations indicative of the dominant texture compo-
nents are obtained by an energy-tracking mechanism in the mul-
tidimensional feature space consisting of the filter responses.
The filtered texture components are subjected to energy mea-
surements via the 2-D energy operator ¥ and demodulation
through the ESA algorithm ( 5). The energies are then averaged
by alocal averaging filter h, and are subjected to pixelwise com-
parisons. The filter with the maximum average Teager energy,
given by

Unat(I(z,9)) = max U [((T % hg) * ha)(z,9)] 6)

where * denotes 2-D signal convolution, indicates the most
prominent texture component. The derived W ,,,; is a slowly
varying descriptor of texture modulation energy, which can
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indicate various energy levels and thus different textures with
respect to their Teager energy signatures. In parallel, a low-di-
mensional feature set is obtained by terming the dominant
modulation amplitude a.p(x,y) and frequency vector Sp(x,y)
as the set of demodulated values corresponding in each image
location to the most active, in the above energy sense, filter
output. The modulation features obtained by tracking the dom-
inant texture components along multiple bands provide both
local and global texture information and serve as rich descrip-
tors of a wide variety of textures. They have been recently used
with success for texture segmentation in [15].

IV. COUPLED SEGMENTATION SCHEME

A recently proposed method for image decomposition is the
I = U 4 V model [16], where the U part is called the “car-
toon component” and consists of relatively flat plateaus for the
object regions surrounded by abrupt edges, whereas the V' part
is called “texture oscillation” and contains texture plus noise
information. By treating and processing the two components
separately, a powerful joint segmentation scheme is proposed.
Contrast variations are taken into account from the U part, and
texture oscillations are approached through modulation analysis
on the V' component.

Several nonlinear, edge-preserving, image smoothing
schemes can create cartoon approximations of an image such
as the anisotropic diffusion or total variation scheme [16]. We
use levelings [17], which are nonlinear object-oriented and
contour-preserving filters, to simplify an image I by locally
expanding/shrinking an initial seed image, called the marker
M, and globally constraining the marker evolution by the
reference image. Specifically, iterations of the image operator
AMFI|I) = (6(F)ANI)Ve(F), where §(F) and e(F) are dilation
and erosion, respectively of F' by a small disk, yield in the limit
the leveling of I w.r.t. M, denoted as A(M|I) = limg_,o0 F,
Fy, = M Fy—1|I), Fy = M.

We set as cartoon component the leveling U = A(M|I)
and as texture component the residual V. = I — U. We con-
struct multiscale leveling cartoons U; from a sequence of mul-
tiscale markers M, obtained from sampling a Gaussian scale-
space. The corresponding residuals V; = I — U, constitute a
hierarchy of multiscale texture components. As an alternative
marker, we consider the use of anisotropic diffusion, where at
each sequence step the leveling marker is obtained by a ver-
sion of the image with blurred regions but adequately preserved
boundaries, caused by the constrained diffusion process.

The proposed new segmentation scheme is based on the fol-
lowing curve evolution PDE:
aC A1 =
5= (e Vi)~ ) § )

where f; and f> are image transformations related to the orig-
inal I, but not necessarily the same. Thus, the curve’s speed de-
pends on three terms: the first two are eikonal, whereas the third
(curvature motion) is diffusive. All terms are linked with some
optimality criterion. The first term drives the curve with speed
that maximizes the flooding of the f; image toward its water-
shed. The second term can be shown to correspond to a flow that
maximizes the average texture energy: max f f R(C) U(f) =

dC /ot = W(f)N. This term pushes the curve toward regions
with large texture energy.

Following the level set formulation in [9], we embed this
evolving planar curve as the zero-level curve of an evolving
space-time function ®(z, y, t)
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where curv(Q®) is the curvature of the level sets of .

Based on the PDE (7), different scenarios can be obtained by
varying the signals f7 and f>. The most obvious choice is f; =
1, fo = I, but we also propose another novel and promising sce-
nario, whichis f; = U, fo = V. The former is a curve evolution
with velocity inversely proportional to the intensity contrast (or
volume) of the input image and proportional to the ¥ .1 energy
of the image. The latter is a curve evolution with speed inversely
proportional to the intensity contrast (or volume) of the cartoon
component and proportional to the W, energy of the textured
component, and is favored and further investigated since it inte-
grates edge and texture information by combining the different
signals produced by the U + V' decomposition of the image.

In the proposed scheme, there are multiple curves to be prop-
agated, initialized as the contours of a marker set, indicative of
significant/homogeneous image regions. In general, marker ex-
traction is application dependent and there is a great variety of
methodologies dealing with this problem. Thus, markers can
be: 1) contrast-oriented corresponding to peaks or valleys of
certain depth (obtained via reconstruction filters); 2) peaks of
Winat (1), indicating areas with rich texture; 3) combination of
contrast as well as texture criteria; and 4) manually placed at
areas of interest. The implementation of marker contour propa-
gation (8) has been done with established techniques from level
sets methods. If 4 = 0 the PDE is of pure eikonal-type, and
its implementation is based on the fast marching methodology
(FMM) [11], which ensures computational speed. If u # 0
the PDE is implemented using the narrow-band method [11],
and the segmentation boundaries are smoothed. The use of the
k-term is optional.

(o) — s curv<<1>>) Iva|
8)

V. EXPERIMENTS AND DISCUSSION

The proposed methods for texture analysis, decomposition,
and joint segmentation have been applied to large-scale soil-
sections scanned at 47 pixel /micron and small-scale ones from
microscopes with polarized light at 1 pixel/micron. In Fig. 1,
we present an example of the second category, where multi-
band texture modulation energy tracking is applied and the set of
dominant features are extracted. In Fig. 1(a), we can clearly dis-
criminate organic and nonorganic matter (large gray and white
objects), voids (black areas), and fine structure clusters. The
well-localized texture energy measurement in Fig. 1(c) indi-
cates strong texture variations. This type of dual, amplitude and
frequency, information jointly captured by the W,,..(I) energy
supports the use of modulation energy for texture analysis. Spa-
tial resolution is almost excellent with operations on 3 x 3 local
window, and spectral depending on the filters’ bandwidth.

To evaluate texture analysis effectiveness in terms of classi-
fication, independently of the classifier choice, we consider the
separability of classes in a set of typical soil textures. The Fisher
criterion [ 18] is a measure of intercluster distance and compact-
ness. According to the Fisher linear discriminant, feature vec-
tors corresponding to two different classes are linearly projected
to the 1-D space to achieve maximum separability, given by the
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Fig. 1.
maximum average Teager energy. (d) Dominant frequency orientation vectors.

Foom ()

() A(d)

Texture analysis. (a) Soilsection image (768 X 567 pixels) digitized at 1 pixel/micron. (b) Gabor filterbank frequency responses. (c) Perspective view of

Fig. 2. Segmentation results. (a) “Cartoon component” U. (b) “Texture component” V. (c) Texture energy ¥,,a.(V). (d) Gradient magnitude. (¢) Markers.
(f) Coupled segmentation scheme result (A(¢) = 1). (g) Segmentation regions. (h) Refined segmentation regions.

S -.-;v.;ii:":,(b)

Fig. 3.

Different segmentation methods results and the their corresponding goodness measures LYGC and MSF. (a) Coupled segmentation scheme results (A(t)
1), LYGC = 2.24, MSF = 1.45. (b) Watershed segmentation, LYGC = 4.04, MSF = 1.47. (c) Split and merge segmentation based on RSST, LYGC = 35.

MSF = 22.3. (d) K-means clustering segmentation, LYGC = 4.49, MSF = 2.10. For the result of Fig. 2(f) LYGC = 2.51, MSF = 1.46.

criterion f = |py — p2|/+\/0% + o3, depending on the distance
of the means relative to the sum of variances of the projected
distributions.

We consider three feature vectors to compare a well-
established multiband method with the proposed: 1) Gabor
energy features [18], [19], the quadrature filter magnitude of
every band; 2) Teager energy of the Gabor responses; and
3) modulation energy VU,,,;, dominant frequency orientation
/&p, and image intensity /. While the two vectors are of
the same dimension per pixel as the number of filters, the
dominant and intensity features highly decrease dimension-
ality. For all pairs of the four typical texture classes in Fig. 4,
the Fisher distances attained by the three vectors f,, f:, and
fa, respectively, were computed. The max and min distances
with the corresponding texture pairs per method are f, =
[1.41 (Q-0O1), 1.03 (Q-F)], fr = [1.56 (Q-O1), 1.10 (Q-F)],
fa = [1.65 (F-01), 1.01 (F-O2)]. Gabor Teager energy
features attain higher separability for any pair, with a mean

Fig. 4. Typical soil texture details. (Left to right) Quartz grains—crystals (Q),
fine matter (F), and organic matter (O1, O2).

distance of 1.33, compared to typical energy, of mean 1.23.
The low-dimensionality dominant vector attains the maximum
distance and an average 1.27 over all pairs.

Texture modulation energy balances the tradeoff between di-
mensionality and effectiveness, and the energy operator out-
performs the conventional energy measurements. The emerged
dominant modulation features can be used for further analysis
of segmented soil images, texture classification, or distribution
estimation regarding region type, texture, or geometry.
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Fig. 5. Large-scale segmentation results in aerial image detail.

Following the monochromatic U + V' decomposition using
the leveling approach with anisotropic or Gaussian markers
and texture feature extraction [Fig. 2(a)—(c)], an appropriate set
of automatically obtained segmentation markers [Fig. 2(e)] is
evolved according to the PDE scenario of (8) where f; = U and
fo = V. The initial segmentation results [Fig. 2(f)—(g)], due
to the multistructured nature of these images, are refined by a
region postmerging procedure [Fig. 2(h)] based on a similarity
measure and a Fisher distance variance constraint.

The proposed scheme was tested against other simpler
but established segmentation methods in order to verify its
ability to improve segmentation results. Comparisons were
performed against traditional watershed, K-means clustering,
and recursive shortest spanning tree (RSST) split and merge
algorithm [22], using as quantitative, goodness criteria the
Liu-Yang global cost (LYGC) [20] and Mumford—Shah energy
functional (MSF) [21]. The smaller their values, the better the
segmentation results are. Comparisons results are illustrated in
Fig. 3, together with the corresponding quality measures. It is
obvious that the proposed segmentation method outperforms
the traditional watershed, Fig. 3(b). This was expected since the
new scheme incorporates contrast and texture information, thus
refining the watershed segmentation results by improving edge
localization and suppressing boundaries at false edges (due to
texture presence). If instead of A(¢) = 1 in the evolution PDE
of (7) we use A(t) # 1[10], which produces a volume flooding
watershed-like term, the segmentation results are further im-
proved in terms of better localization of region boundaries at
the edges as can be seen in Fig. 3(a). The comparisons with
RSST and K-means clustering (even after refinement and pro-
cessing of the raw clustering results in order to create connected
regions) shown Fig. 3(c) and (d) are in favor of the advanced
scheme. The results of these methods appear undersegmented,
and localization of the edges is poor and in the RSST case
strongly quantized.

The coupled scheme, integrating textural and geometric in-
formation, yielded more meaningful segmentations compared
to conventional methods and refined results with respect to
classic watershed. Evaluation was performed both visually
and by means of quality measures, for soil images of complex
structure. The importance of texture analysis is revealed by
the segmentation performance attained through the image-
texture decomposition scenario. Texture modulation energy
also improves soil texture separation for classification, a fact
that can be exploited for further analyzing segmented soil re-
gions with precomputed features. A combination of geometric,
statistical and textural measurements on the labeled images
will map characteristic soil properties for the evaluation of

its bioecological quality. Similar techniques could be applied
to other aspects of subterranean and surficial analysis as well
as to remote sensing imagery. To demonstrate this potential,
we provide an aerial image example shown in Fig. 5, where a
segmentation in homogeneous regions was achieved using the
proposed methods.
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